

DETAILED SITE INVESTIGATION

74 Fern Avenue

Bradbury

NSW 2560

March 2021

rawearthenvironmental.com.au

REPORT DISTRIBUTION

Report Title	Detailed Site Investigation		
Site Address	74 Fern Avenue, Bradbury NSW 2560		
Project Reference	DSI-BRAD		
Prepared For	Capital Developments		
Document Number	1		
Author	Daniel Taylor		
	Environmental Scientist		
	Daniel Taylor Environmental Scientist B.Sc. (Geology)		
	Licensed Asbestos Assessor		
	(Registration Identification LAA 001282)		
Date	1 st March 2021		
Raw Earth Environmental	Enquiries:		
Pty Ltd	hello@rawearthenvironmental.com.au		
ACN: 635 583 327	www.rawearthenvironmental.com.au		
1			

TABLE OF CONTENTS

EXECUTIVE SUMMARY	4
1. INTRODUCTION	7
1.1 BACKGROUND	7
1.2 PROPOSED DEVELOPMENT	7
1.3 REGULATORY FRAMEWORK	8
1.4 PROJECT OBJECTIVES	10
1.5 SCOPE OF WORKS	10
1.5.1 DESKTOP STUDY	11
1.5.2 FIEDWORK & LABORATORY ANALYSIS	11
1.5.3 DATA ANALYSIS & REPORTING	12
2. SITE INFORMATION	13
2.1 SITE IDENTIFICATION	13
2.2 SITE DESCRIPTION	14
2.3 SURROUNDING LAND-USE	15
2.4 GEOLOGY	15
2.5 HYDROLOGY	16
2.6 ACID SULPHATE SOILS	16
2.7 SURFACE WATER RECEPTORS	17
3. PREVIOUS INVESTIGATIONS	17
4. CONCEPTUAL SITE MODEL	19
4.1 POTENTIAL CONTAMINATION	19
4.2 CONTAMINATION SOURCES, EXPOSURE PATHWAYS & RECEPTORS	19
4.3 ADDRESSING DATA GAPS	21
5. AREAS OF ENVIRONMENTAL CONCERN	21
6. DATA QUALITY OBJECTIVES	23
7. INVESTIGATION METHODOLOGIES	25
7.1 SAMPLING ANALYSIS PLAN	25
7.2 SOIL SAMPLING METHODOLOGY	26
7.3 QUALITY ASSURANCE	28
8.ASSESSMENT CRITERIA	29
9. INVESTIGATION RESULTS	
9.1 SOIL ANALYTICAL RESULTS	31
9.2 QA/QC RESULTS	32
10. CONCLUSIONS	35

11. RECOMMENDATIONS	36
12. LIMITATIONS	37
13. REFERENCES	

FIGURES

Figure 1 - Site Locality Plan

Figure 2 - Site Plan

Figure 3 - Areas of Environmental Concern

APPENDICES

Appendix A – Photographic Log

Appendix B – Laboratory Analytical Results

EXECUTIVE SUMMARY

Raw Earth Environmental Pty Ltd (REE) were engaged to conduct a Detailed Site Investigation (DSI) at the property located at 74 Fern Avenue, Bradbury NSW 2560 (the site).

As shown in **Figure 1**, the site is located approximately 44 km south-west of Sydney, within the Local Government Area of Campbelltown City Council. The site covers an approximate area of 2.3ha (as shown in **Figure 2**) and is identified as Lot 101 DP 1168971.

This DSI has been prepared to identify Areas of Environmental Concern (AEC) within the site and assess potentially contaminating activities which may have impacted these areas. A site inspection was conducted by REE on 19th February 2021. Four AECs were identified and subject to a soil investigation program. The AECs are shown in **Figure 3**.

Based on the soil investigation undertaken at the site, four AECs (AEC1 – AEC4) were identified within the site and assessed for potentially contaminating activities which may have impacted these areas. A site inspection was conducted by REE on 19th February 2021. The AECs which were be investigated are shown in **Figure 3**.

Based on the soil investigation undertaken at the site, four AECs were identified within the site and assessed for potentially contaminating activities which may have impacted these areas. A site inspection was conducted by REE on 19th February 2021. The AECs which were be investigated are shown in **Figure 3**.

Based on REE's assessment of the site, the following conclusions have been made:

- No soil samples collected from AEC 1, AEC 2 and/or AEC 4 detected concentrations greater than applicable guideline criteria;
- The soil sampling program recorded exceedances over applicable guideline criteria for benzo(a)pyrene and asbestos from samples collected within AEC 3;
- Benzo(a)pyrene was detected at levels (1.8mg/kg) exceeding ESLs for urban residential and public open space for fine grain soils in soil sample S1, from AEC 3;
- Asbestos was detected in soil samples S1 and S2, collected from AEC 3. The estimated asbestos fibres (%w/w) were calculated at >0.01 in sample S2, exceeding applicable guideline criteria;
- Suspected ACM was identified in all on-site structures; and
- No groundwater was encountered during borehole excavations.

Given the presence of on-site contamination identified through soil sampling within AEC 3, **Section 11** provides recommendations in order to make the site suitable for its intended development for residential land-use.

It is the opinion of REE and in accordance with relevant Australian standards and guidelines that the site can be made suitable for the proposed residential development subject to identified areas of contamination be remediated through implementation of the following recommendations.

A Remediation Action Plan (RAP) should be developed for the site by an experienced Environmental Scientist who is a qualified NSW Licensed Asbestos Assessor (LAA), which details the objectives and processes for remediating contaminated soils identified in Section
 9 in accordance with relevant Australian standards and guidelines. The RAP should set objectives for the remediation strategy and the recommended clean-up criteria. In order for

the site to be made suitable for its intended land-use, the levels of soil contamination listed in **Section 9** must be reduced to an acceptable level;

- Preparation of a Site Validation Report concluding that the site has been remediated to allow the proposed development for residential purposes should be prepared for the site.
- If fill material is to be removed offsite for disposal, it will require classification in accordance with the NSW Environmental Protection Authority, *Waste Classification Guidelines Part 1: Classifying Waste*, 2014. These materials should be disposed of at an appropriately licenced landfill facility;
- If fill material is to be removed from AEC 3, as a minimum a Class B (bonded) licensed asbestos removal contractor should be engaged to remove the asbestos-impacted material;
- A Hazardous Materials (HAZMAT) Survey should be completed for all on-site structures scheduled to be demolished as per Australian Standards;
- In the event of any unexpected finds including the discovery of underground storage tanks,
 ACM, odorous and/or stained soil material during excavation activities, all site works must
 cease, and REE must be notified immediately for further investigation.

1. INTRODUCTION

1.1 BACKGROUND

Raw Earth Environmental Pty Ltd (REE) were engaged to conduct a Detailed Site Investigation (DSI) at the property located at 74 Fern Avenue, Bradbury NSW 2560 (the site).

As shown in **Figure 1**, the site is located approximately 44 km south-west of Sydney, within the Local Government Area of Campbelltown City Council. The site covers an approximate area of 2.3ha (as shown in **Figure 2**) and is identified as Lot 101 DP 1168971.

The site is currently occupied by one two-storey structure, one single-storey structure, one carparking area and associated driveway, a tennis court, 2 cleared areas, 2 infilled pools, a pool pump shed, with trees, gardens and landscaping throughout the site.

This report is provided in support of a Development Application (DA) to Campbelltown City Council and for the purpose of enabling the developer to meet its obligations under the Contaminated Land Management Act 1997 (CLM Act), for the assessment and management of contaminated land.

1.2 PROPOSED DEVELOPMENT

REE understand that site is proposed to be subdivided and developed to allow for the completion of residential lots in the form of dwelling houses which may involve the following works:

- Tree removal and demolition of existing structures;
- Subdivision of existing allotments;
- Civil works including the construction of new roads and excavation of land; and
- Construction of new dwellings.

Site photographs are included in the Photographic Log in Appendix A.

1.3 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- Department of Urban Affairs and Planning, NSW Environmental Protection Authority, Managing Land Contamination – Planning Guidelines – SEPP 55 – Remediation of Land, 1998;
- National Environment Protection (Assessment of Site Contamination) Measure 1999, Schedule B1 – Guideline on Investigation Levels for Soil and Groundwater, 2013;
- National Environment Protection (Assessment of Site Contamination) Measure 1999, Schedule B2 – Guideline on Site Characterisation, 2013;
- NSW Department of Environment and Conservation, *Guidelines for the Assessment and Management of Groundwater Contamination*, 2007;

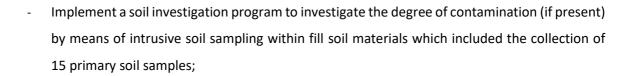
- NSW Environmental Protection Authority, *Contaminated Land Management, Guidelines for the NSW Site Auditor Scheme (3rd Edition)*, 2017;
- NSW Environmental Protection Authority, *Guidelines on the Duty to Report Contamination under Contaminated Land Management Act*, 1997;
- NSW Environmental Protection Authority, *Sampling Design Guidelines*, 1995;
- NSW Environmental Protection Authority, *Waste Classification Guidelines Part 1: Classifying Waste*, 2014;
- NSW Office of Environment & Heritage, Guidelines for Consultants Reporting on Contaminated Sites, 2011;
- State Environment Protection Policy 55 (SEPP 55). *Remediation of Land Under the Environmental Planning and Assessment Act*, 1998;
- Western Australia Department of Health, *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*, 2009;
- Work Health and Safety Act, 2011; and
- Work Health and Safety Regulation, 2017.

1.4 PROJECT OBJECTIVES

This DSI has been prepared to identify Areas of Environmental Concern (AEC) within the site and assess potentially contaminating activities which may have impacted these areas. A site inspection was conducted by REE on 19th February 2021. The AECs which were be investigated are shown in **Figure 3**.

Area of Environmental	Figure	Description
Concern Reference		
AEC 1	3	Cleared Area 1. North-west portion of the site. Park area
		appeared to have fill imported to the site in order to make
		the ground surface level.
AEC 2	3	Cleared Area 2. North-east portion of the site. Park area
		appeared to have fill imported to the site in order to make
		the ground surface level.
AEC 3	3	Pool Area. Southern portion of the site. It is understood in-
		ground swimming pools were back-filled with soil materials.
AEC 4	3	Carparking area.

1.5 SCOPE OF WORKS


To achieve the above project objectives, the following scope of works were undertaken to produce this DSI.

1.5.1 DESKTOP STUDY

- Discussion of the site condition through a desktop review of neighbouring properties and ecological receptors;
- Review of available environmental, architectural and/or engineering reports (if any);
- Dial-Before-You-Dig enquiry for an evaluation into local underground services and assets;
- Review of local geological and hydrogeological information, an evaluation of the WaterNSW registered groundwater bore database and Acid Sulphate Soil (ASS) data;
- Development of a Conceptual Site Model (CSM) to identify the connections between potential sources of contamination, exposure pathways, and human/ ecological receptors; and
- Identify potential Areas of Environmental Concern (AEC) to be confirmed during the site inspection.

1.5.2 FIEDWORK & LABORATORY ANALYSIS

- A site inspection and soil investigation program were undertaken on 19th February 2021;
- Hand auger excavation of 15 boreholes (S1 to S15) spread across accessible areas of the AECs within the site in a judgemental sampling approach to identify areas of contamination;

- Implement standard quality assurance (QA) and quality control (QC) measures including the collection of 1 intra- laboratory (blind duplicate) soil sample. Rinsate blank, trip blank and trip spike samples were also collected to ensure the quality of sampling, handling and transport of samples;
- Laboratory analysis of samples collected from the site by a National Association of Testing Authorities (NATA) accredited laboratory for relevant contaminants of potential concern (COPC) which may have impacted the site during current and historical activities, as determined from the site history survey and field observations made during the investigation program; and
- COPCs include Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Polychlorinated Biphenyls (PCBs), heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc, mercury), and/or asbestos.

1.5.3 DATA ANALYSIS & REPORTING

This DSI report will document desktop study findings, the conceptual site model, data quality objectives and investigation methodologies in areas of the site which were identified as an AEC.

In addition, a discussion of laboratory analytical results and an assessment of site contamination (if any) are presented. Advice is provided on suitability of the site for its proposed residential land-use with recommendations for remediation and/or management if necessary.

2. SITE INFORMATION

2.1 SITE IDENTIFICATION

The location of the site is shown in Figure 1 with a detailed site plan shown in Figure 2.

Table 2: Site Details

Address	74 Fern Avenue, Bradbury NSW 2560	
Deposited plan	Lot 101 DP 1168971	
Locality map	Figure 1	
Site plan	Figure 2	
Site photographs	Appendix A	
Area	2.3ha	

2.2 SITE DESCRIPTION

A qualified Environmental Scientist inspected the site on 19th February 2021. Site photographs are provided in **Appendix A**. Observations noted during the inspection are summarised below.

At the time of the site inspection, the site contained the following structures and features:

- One residential dwelling;
- One two-storey structure;
- One single-storey structure,
- One carparking area and associated driveway,
- One tennis court,
- Two cleared parkland areas,
- Two infilled pools,
- A pool pump shed, and
- Trees, gardens and landscaping throughout the site;
- On-site vegetation showed no signs of decay and/or stress; and
- There were no indicators of other aboveground and/or underground storage tanks.

2.3 SURROUNDING LAND-USE

Table 3 below outlines the surrounding land-uses neighbouring the site.

Table 3: Surrounding land-use adjacent to the site.

Direction from site	Land-use	
North	Fern Avenue and residential properties beyond.	
East	Residential properties.	
South	Commercial and residential properties.	
West	Appin Road and residential properties beyond.	

2.4 GEOLOGY

The Geological Map of Wollongong- Port Hacking (Geological Series Sheet 9029-9129, Scale 1:100,000, Edition 1, 1985), published by the Department of Primary Industries indicates the residual soils within the site to be underlain by fine to medium grained lithic sandstone of the Wianamatta Group.

2.5 HYDROLOGY

A groundwater bore search was conducted on 27th February 2021 and one registered groundwater bore was detected within 500 m of the site. The nearest groundwater bores to the site are summarised in **Table 4** below.

Table 4: Nearest Registered Groundwater Bore Data

GW Bore ID	Location	Intended Purpose	Distance from site boundary (m)	Drill Depth (mbgl)	Standing Water Level (mbgl)	Drillers Log (mbgl)
GW103996	34°04'55.7"S; 150°48'44.5"E	Monitoring Bore	Approx. 390	3.87	-	0.00 – 0.1: Asphalt. 0.1 – 0.8: Clayey sand, brown and grey. 0.8- 3.87: Sandstone, orange

2.6 ACID SULPHATE SOILS

To determine whether there is a potential for acid sulphate soils to be present at the site, an indicative review of available Acid Sulphate Soils (ASS) risk maps was undertaken. The site is located within an area which suggests there is no known occurrence regarding the presence of ASS.

2.7 SURFACE WATER RECEPTORS

The nearest surface water body is Fishers Ghost Creek, approximately 300m to the east. Given the distance to this surface water body, it is not considered to be a potential receptors of groundwater contamination sourced from the site (if any).

Based on regional topography and the nearest surface water sources, groundwater is expected to flow towards the east.

3. PREVIOUS INVESTIGATIONS

Previous environmental investigations of the site were recorded under the following reports:

- Noel Arnold & Associates Pty Ltd, *Preliminary Site Investigation and Limited Soil Investigation*, dated March 2012.

Noel Arnold & Associates Pty Ltd (NAA) undertook a Preliminary Site Investigation (PSI) with a Limited Soil Investigation (LSI) at the site in March 2012.

NAA came to the following conclusions:

- As indicated by the historical aerial photographs, the main Building (Raith House) was constructed before 1956;
- As indicated by the historical aerial photographs, the ancillary structures including the 'Pool Area' were constructed between 1984 and 1994;

- As indicated by the historical aerial photographs, the pool was filled in between 2002 and 2011;
- A search of OEH records revealed the site and its surrounding properties have not been declared as contaminated or listed on the NSW contaminated sites register;
- There is potential for asbestos and/or hazardous building materials to be present within the buildings on the site;
- Asbestos containing material (ACM) fragments were found within the soil profile of the standard sized pool;
- It was suspected the fill material of the baby pool also contains asbestos materials;
- A Remedial Action Plan (RAP) or a Site Management Plan that addresses the remediation and/or management of asbestos impacted soils is required to be prepared by a suitably qualified environmental consultant;
- If fill material is to be removed off-site for disposal, it will require classification in accordance with the NSW Environmental Protection Authority, *Waste Classification Guidelines Part 1: Classifying Waste*, 2014. These materials should be disposed of at an appropriately licenced landfill facility;
- If fill material is to be removed, as a minimum a Class B (bonded) licensed asbestos removal contractor should be engaged to remove the asbestos-impacted material;
- Prior to demolition of any buildings on site a Hazardous Building Materials Survey should be undertaken
- Should areas of potential soil or groundwater contamination not covered by this LSI be identified at the site during future works or development, a suitably qualified environmental consultant should be contacted, and appropriate investigations undertaken.

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, a Conceptual Site Model (CSM) assesses plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in the existing site characterisation. The CSM can be seen in **Table 5** in **Section 4.2**.

4.1 POTENTIAL CONTAMINATION

Based on the findings of the previous site investigations by NAA (2012), a desktop review of the site, neighbouring properties, nearby ecological receptors, the COPCs at the site are considered to be:

Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene, Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Polychlorinated Biphenyls (PCBs), heavy metals and/or asbestos.

4.2 CONTAMINATION SOURCES, EXPOSURE PATHWAYS & RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 5**.

Table 5: Conceptual Site Model

Potential	Potential	Potential Exposure	Complete	Risk	Justification
Sources of	Receptor	Pathway	Connection		
Contamination					
Contaminated	Site	Dermal contact,	Limited	Low	Direct contact with potentially
soil from	occupants,	inhalation/ingestion	(Current)		contaminated soil is limited (if
importation of	neighbours,	of particulates.			any).
uncontrolled	workers,		No (Future)	-	If present, impacted soils are
fill across the	general		NO (Future)	-	likely to be remediated and/or
site.	public.				disposed of off-site.
					disposed of on-site.
	Ecosystems	Migration of	Limited	Low	Due to distance to surface
ACM in site	of Fishers	impacted sediment,	(Current)		water bodies, they are not
structures and	Ghost	groundwater and			considered to be receptors of
soil materials.	Creek.	surface water run-			groundwater/ surface water
		off.			contamination sourced from
					the site (if any).
Vehicle parking			No (Future)	-	If present, impacted soils are
on-site			No (Future)		likely to be remediated and/or
					disposed of off-site.
	Underlying	Leaching and	Limited	Low	Due to expected shallow
	aquifer	migration of	(Current)		bedrock, leachability of COPC
		contaminants			and migration of COPC is likely
		through			to be limited.
		groundwater	No (Future)	-	If present, contaminated soil
		infiltration.			and/or groundwater is likely to
					be remediated.

4.3 ADDRESSING DATA GAPS

_

Based on information on the site history and the site investigation on 19th February 2021, potential contamination sources, exposure pathways and human and environmental receptors identified in the CSM, the following data gaps were identified and addressed:

The contamination status of on-site soils within AECs due to historical importation of fill to the site and vehicle parking. A combination of visual inspections and soil sampling within accessible areas of the AECs was undertaken to identify any potential on-site contamination.

5. AREAS OF ENVIRONMENTAL CONCERN

Based on the site history, previous reports, review of available information on the site and the site inspection, the Areas of Environmental Concern (AEC) and their associated COPCs for the site were identified and summarised in **Table 6** below.

Table 6: Potential Areas and Contaminants of Concern

AEC	Potentially	СОРС	Likelihood	Comments
	Contaminating		of Site	
	Activity		Impact	
AEC 1- Cleared	Importation of fill	Heavy Metals,	Low	Based on site
Area 1	material from	TPH, BTEX, PAH,		observations, the
	unknown origin.	OCP, PCBs,		presence of imported
		Asbestos		fill material is likely.
AEC 2- Cleared	Importation of fill	Heavy Metals,	Low	Based on site
Area 2	material from	TPH, BTEX, PAH,		observations, the
	unknown origin.	OCP, PCBs,		presence of imported
		Asbestos		fill material is likely.
AEC 3 – Pool	Importation of fill	Heavy Metals,	Low	Based on site
Area	material from	ТРН, ВТЕХ, РАН,		observations, the
	unknown origin.	OCP, PCBs,		presence of imported
		Asbestos		fill material is likely.
AEC 4 –	Fuel and oil	Metals, TPH,	Low	Staining areas within
Carparking	spills/leaks with	BTEX, PAH.		car parking areas
Area	vehicles			were not noted
				during site inspection.

Abbreviations: Asbestos Containing Materials (ACM), Benzene, Toluene, Ethylbenzene and Xylene (BTEX), Ozone Depleting Substances (ODS), Organochlorine Pesticides (OCPs), Organophosphorus Pesticides (OPPs), Polychlorinated biphenyls (PCBs), Polycyclic Aromatic Hydrocarbon (PAH), Total Petroleum Hydrocarbons (TPH), Synthetic Mineral Fibres (SMF).

6. DATA QUALITY OBJECTIVES

In accordance with the US EPA (2006) Data Quality Assessment and the DEC (2006) Guidelines for the NSW Site Auditor Scheme, the process of developing Data Quality Objectives (DQO) was used to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented below.

- Step 1: State the problem.

The subject site may be contaminated as a result of previous and current land use which may impact suitability of the site as residential land-use.

- Step 2: Identify the decision.

Undertake a soil investigation at the site to identify any potential contamination which may pose a risk to human health and/or the environment. If contamination is identified within the site, can the site be made suitable for its intended residential land use with the requirement for remediation and/or management if necessary.

- Step 3: Identify inputs into the decision.
 - Identification of issues of potential environmental concern;
 - Appropriate identification of COPC;
 - Judgemental and/or systematic soil sampling and analysis programs of shallow soil across the site;
 - Visual inspection of potentially contaminating waste materials, including asbestos, soil odours and staining.
 - Visual inspection of systematic shallow soil samples for presence of ACM;

- Appropriate QA/QC to enable an evaluation of the reliability of the analytical data; and
- Screening sample analytical results against appropriate assessment criteria for the intended land use.
- Step 4: Define the boundaries of the site.
 - The boundaries of the site are those outlined in Figure 2. The AECs subject to this environmental investigation differ from the site boundary and are also shown in Figure 3. The AEC boundaries which make up this investigation within the overall site were established during the initial site inspection by REE on 19th February 2021.

- Step 5: Develop a decision rule.

To accept the assessment decision the following decision rules apply: For judgemental soil sampling the sampling data must meet the following qualifiers;

- The 95% Upper Confidence Limit of COPC concentration data does not exceed the soil assessment criteria;
- No single sample exceeds 250% of the soil COPC assessment criteria;
- The standard deviation of COPC analytical results is less than 50% of the soil assessment criteria; and
- There is no visible identification of ACM in soil samples or on the ground surface.
- Step 6: Specify acceptable limits on decision errors.

The field sampling methodology, sample preservation techniques, and laboratory analytical procedures must be appropriate to provide confidence in data quality so any comparison

against assessment criteria can be considered reliable. This is achieved by defining and comparing results against the Data Quality Indicators (DQIs).

- Step 7: Optimise the design for obtaining data.

This is achieved with a sampling plan design in consideration of the available site history information, areas of environmental concern, contaminant behaviour in the environment, and likely spatial distribution of contamination.

7. INVESTIGATION METHODOLOGIES

REE conducted a site inspection and soil sampling program on the 19^{th of} February 2021. Sample locations for the site are presented in **Figure 2**. The investigation methodology is presented below.

7.1 SAMPLING ANALYSIS PLAN

To assess the potential for soil contamination at the site, REE identified four AECs within the overall site and implemented a judgemental soil investigation program to investigate the degree of contamination (if present) by means of intrusive soil sampling within fill soil materials which included the following processes.

- Hand auger excavation of 15 boreholes (S1 to S15) spread across accessible areas of the AECs within the site in a judgemental sampling approach to identify areas of contamination;

- Implement standard QA/QC measures including the collection of 1 intra- laboratory (duplicate) soil sample, 1 set of soil trip blank and trip spike, and 1 rinsate blank sample;
- Visual inspection of the ground surface and excavated soil for ACM;
- Laboratory analysis of samples collected from the site by a National Association of Testing Authorities (NATA) accredited laboratory for relevant COPC which may have impacted the site during current and historical activities, as determined from the site history survey and field observations made during the investigation program; and
- COPCs include Total Recoverable Hydrocarbons (TRH), Benzene, Toluene, Ethylbenzene,
 Xylenes (BTEX), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs),
 Polychlorinated Biphenyls (PCBs), heavy metals, and asbestos.

7.2 SOIL SAMPLING METHODOLOGY

Boreholes S1 to S15 were completed using a manual hand auger to a maximum depth of 0.6m below ground surface (mbgl) or prior refusal.

Soil samples were collected directly from the auger, placed in laboratory prepared 250mL soil jars, labelled and placed on ice in an esky for transport under chain of custody (COC) to a NATA accredited laboratory for the analysis of the COPC. The hand auger was decontaminated between each borehole excavation with Decon90.

Subsurface conditions across the site as observed during borehole excavations were generally silty topsoil underlain by inhomogeneous fill material consisting of predominantly clays with minor gravels,

sands, silts, crushed bricks and concrete, humid to moist, medium to low plasticity. Table 6A summarises sample locations, depths and rationale. Refer to **Figure 2** for detailed sample locations.

Table 6A: Soil Sample Depth, Location and Rationale

Sample Reference / Depth (m)	On-site Location	Rationale for Sampling Location
S1 0.3	Southern portion.	Extend site coverage, laterally delineate potential contamination within AEC 3.
S2 0.3	Southern portion.	Extend site coverage, laterally delineate potential contamination within AEC 3.
S3 0.3	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
S4 0.3	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
S5 0.2	North-east portion.	Extend site coverage, laterally delineate potential contamination within AEC 2.
S6 0.3	Eastern portion.	Extend site coverage, laterally delineate potential contamination within AEC 4.
\$7 0.2	North-east portion.	Extend site coverage, laterally delineate potential contamination within AEC 2.
S8 0.2	North-east portion.	Extend site coverage, laterally delineate potential contamination within AEC 2.
S9 0.2	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
\$10 0.2	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
S11 0.2	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.

S12 0.2	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
S13 0.2	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
S14 0.2	Northern portion.	Extend site coverage, laterally delineate potential contamination within AEC 1.
S15 0.3	Eastern portion.	Extend site coverage, laterally delineate potential contamination within AEC 4.

7.3 QUALITY ASSURANCE

Quality Assurance (QA) and Quality Control (QC) sampling was undertaken in accordance with relevant Australian standards and guidelines. Field QA/QC samples collected are summarised in **Table 7**.

One duplicate sample was collected to determine the variability of the sampling process. Duplicate and samples are collected simultaneously from the same source as the primary sample, under the same field conditions and sampling technique. Duplicate samples are analysed by the primary NATA accredited laboratory and labelled differently to the primary sample.

Soil trip blank and trip spike samples were prepared by the primary laboratory for the sampling event. Trip blanks are stored with collected samples to determine if cross-contamination amongst samples during collection, storage and transport had occurred. Trip spike samples are spiked with a predetermined concentration of BTEX to determine the loss of volatile compounds during storage and transport of samples from the field.

Rinsate blank sample RS1 was collected during the sampling event to determine whether reusable sampling equipment was appropriately decontaminated between sample collection.

Table 7: Quality Control Duplicate Sample Summary

Replicate Sample Identification	Primary Sample Identification	Sample Matrix	Rate of Collection	
QS1	Field Duplicate of S1	Soil	1 in 20 Samples	

The laboratory internal QA/QC procedures are consistent with the NEPM policy on laboratory analysis of contaminated soils.

8.ASSESSMENT CRITERIA

The following soil assessment criteria were adopted for the investigation.

NEPM Health Based Investigation Level A (HILs A)

HILs are Tier 1 risk based generic assessment criteria used for the assessment of potential risks to human health from chronic exposure to contaminants in soil. They are intentionally conservative and based on a reasonable worst-case scenario for generic land use settings including Residential (HILs A/B), Open Space/Recreational (HILs C) and Commercial Industrial (HILs D). HILs A soil assessment criteria were adopted on the basis the proposed site use is for low-density residential dwellings with gardens/ landscaped areas.

NEPM Health Screening Levels A (HSLs A)

HSLs are Tier 1 risk based generic soil assessment criteria used for the assessment of potential risks to human health from chronic inhalation exposure of petroleum vapour emanating off petroleum contaminated soils (Vapour Risk). They are intentionally conservative and based on a reasonable worst-case scenario for generic soil types, contamination depth and land use settings including Residential (HSLs A/B), Open Space/Recreational (HSLs C) and Commercial Industrial (HSLs D). HSLs A soil assessment criteria for clay soil from 0 to <1 m was adopted on the basis that the proposed site use is for residential dwellings with gardens/ landscaped areas and onsite topsoil/ fill comprised predominantly clays with minor gravel, sand and silt.

NEPM Management Limits – Residential, parkland and public open space

Management Limits for petroleum have been developed for prevention of explosive vapour accumulation, prevention of the formation of observable Light Non-Aqueous Phase Liquids (LNAPL) and protection against effects on buried infrastructure. Residential, parkland and public open space limits have been adopted based on the proposed land use.

NEPM Soil Ecological Assessment Levels

Soil ecological assessment criteria for urban residential and public open space were adopted for the investigation based on the proposed land use.

9. INVESTIGATION RESULTS

9.1 SOIL ANALYTICAL RESULTS

The soil analytical results from the soil sampling program implemented on 19th February 2021 are summarised below. A discussion of the results is presented in **Section 10** with recommendations provided in **Section 11**. Soil analytical results are presented in the **Appendix B Laboratory Analytical Results**.

Total Recoverable Hydrocarbons (TRH)

No TRH compounds were detected at concentrations greater than laboratory LORs in any of the soil samples analysed with the exception of soil sample S1, however these results did not exceed applicable guideline criteria.

Benzene Toluene Ethylbenzene Xylenes (BTEX)

No BTEX compounds were detected at concentrations greater than applicable guideline criteria in any of the soil samples.

Polycyclic Aromatic Hydrocarbons (PAHs)

No PAH compounds were detected at concentrations greater than laboratory LORs in any of the soil samples analysed with the exception of soil sample S1. Benzo(a)pyrene was detected at levels (1.8mg/kg) exceeding ESLs for urban residential and public open space for fine grain soils in sample S1.

Organochlorine Pesticides (OCPs)

No OCPs were detected at concentrations greater than applicable guideline criteria in any of the soil samples.

Heavy Metals (Arsenic, Cadmium, Chromium, Copper, Lead, Nickel, Zinc, Mercury)

Heavy metals were detected at concentrations greater than laboratory LOR in all soil samples collected, however these results did not exceed applicable guidelines criteria.

Asbestos Containing Material (ACM)

Asbestos was detected in soil sample S1 and exceeding applicable guideline criteria (WA DoH) in soil sample S2. The estimated asbestos fibres (%w/w) were calculated at <0.01 in sample S1 and >0.01 in sample S2.

ACM in soil and/or ground surfaces was not visually identified by REE during the site inspection.

Refer to soil analytical results presented in Appendix B Laboratory Analytical Results.

9.2 QA/QC RESULTS

The assessment of variability within the sampling process and between laboratories indicates accuracy and precision with all primary and duplicate samples identified in **Table 7** and **Table 8** reporting analytical results within compliance levels.

Australian Standard 4482.1 specifies the typical Relative Percentage Difference (RPD) for blind replicate samples to be 30% - 50%. RPDs are to be less than 30% for inorganic analytes and 50% for organic analytes.

Relative Percentage Difference (RPD) applies if results are at least 10 times the laboratory limit of reporting (LOR), otherwise no acceptance criteria for RPD's applies. Soil primary duplicate and triplicate sample analytical results are below the primary and secondary laboratory LORs, therefore no acceptance criteria for RPD's apply.

Trip blank samples were analysed by the primary laboratory and reported analytical results below the laboratory limits of reporting (LOR). These results indicate that no cross-contamination has occurred.

Trip spike samples were analysed by the primary laboratory and reported analytical results within acceptable limits of the original concentration (60% - 140%).

Rinsate blank sample RS1 collected on 19th February 2021, were analysed by the primary laboratory and reported no analytes exceeding the detection limit of the laboratory, indicating appropriate decontamination procedures were implemented during the sampling event.

Chemical	LOR	Sample	S1	QS1	RPD
	(Primary	Name	(mg/kg)	(mg/kg)	(%)
	Laboratory)				
Arsenic	1		4	4	0
Cadmium	0.3		<0.3	<0.3	-
Chromium	0.5		7.2	7.9	9
Copper	0.5		25	24	4
Lead	1		42	35	16
Mercury	0.05		0.16	0.12	29
Nickel	0.5		14	18	25
Zinc	2		66	52	24

Refer to Laboratory Analytical Reports in Appendix B for details of these results.

10. CONCLUSIONS

Based on the soil investigation undertaken at the site, four AECs were identified within the site and assessed for potentially contaminating activities which may have impacted these areas. A site inspection was conducted by REE on 19th February 2021. The AECs which were be investigated are shown in **Figure 3**.

Based on REE's assessment of the site, the following conclusions have been made:

- No soil samples collected from AEC 1, AEC 2 and/or AEC 4 detected concentrations greater than applicable guideline criteria;
- The soil sampling program recorded exceedances over applicable guideline criteria for benzo(a)pyrene and asbestos from samples collected within AEC 3;
- Benzo(a)pyrene was detected at levels (1.8mg/kg) exceeding ESLs for urban residential and public open space for fine grain soils in soil sample S1, from AEC 3;
- Asbestos was detected in soil samples S1 and S2, collected from AEC 3. The estimated asbestos fibres (%w/w) were calculated at >0.01 in sample S2, exceeding applicable guideline criteria;
- Suspected ACM was identified in all on-site structures; and
- No groundwater was encountered during borehole excavations.

Given the presence of on-site contamination identified through soil sampling, **Section 11** provides recommendations in order to make the site suitable for its intended development for residential land-use.

11. RECOMMENDATIONS

It is the opinion of REE and in accordance with relevant Australian standards and guidelines that the site can be made suitable for the proposed residential development subject to identified areas of contamination be remediated through implementation of the following recommendations.

- A Remediation Action Plan (RAP) should be developed for the site by an experienced Environmental Scientist who is a qualified NSW Licensed Asbestos Assessor (LAA), which details the objectives and processes for remediating contaminated soils identified in Section 8 in accordance with relevant Australian standards and guidelines. The RAP should set objectives for the remediation strategy and the recommended clean-up criteria. In order for the site to be made suitable for its intended land-use, the levels of soil contamination listed in Section 8 must be reduced to an acceptable level;
- Preparation of a Site Validation Report concluding that the site has been remediated to allow the proposed development for residential purposes should be prepared for the site.
- If fill material is to be removed offsite for disposal, it will require classification in accordance with the NSW Environmental Protection Authority, *Waste Classification Guidelines Part 1: Classifying Waste*, 2014. These materials should be disposed of at an appropriately licenced landfill facility;
- If fill material is to be removed from AEC 3, as a minimum a Class B (bonded) licensed asbestos removal contractor should be engaged to remove the asbestos-impacted material;
- A Hazardous Materials (HAZMAT) Survey should be completed for all on-site structures scheduled to be demolished as per Australian Standards;
- In the event of any unexpected finds including the discovery of underground storage tanks,
 ACM, odorous and/or stained soil material during excavation activities, all site works must
 cease, and REE must be notified immediately for further investigation.

12. LIMITATIONS

Raw Earth Environmental Pty Ltd (REE) understands to the best of our knowledge, the information within this report is accurate at the date of issue. However, due to the irregularity and dynamic nature of subsurface conditions, soil and groundwater characteristics are capable of change over a short period of time. No warranties, expressed or implied, are made. The contents of this report must be read in full.

Subsurface conditions across a site cannot be fully defined by an investigation. Soil and/or groundwater samples were analysed for common contaminants and/or indicators of contamination only. Sample analytical results obtained during the investigation may not be representative of the extremes of contamination which could be present at the site. Therefore, there is not guarantee that other toxic compounds and/or hazardous materials do not exist within the site.

If the unexpected finds of materials suspected to be hazardous or toxic occur, all site works must cease, and REE must be immediately contacted for further instruction.

REE performed the services in a manner consistent with the normal level of care and expertise exercised by members of the environmental consulting profession. There is no investigation thorough enough to dismiss a particular material, which presently or in the future is considered hazardous at the site. Regulatory criteria are subject to change, where concentrations of a particular contaminant currently considered low, could be subject to review and fall under different regulatory standards and criteria and may require remediation in the future.

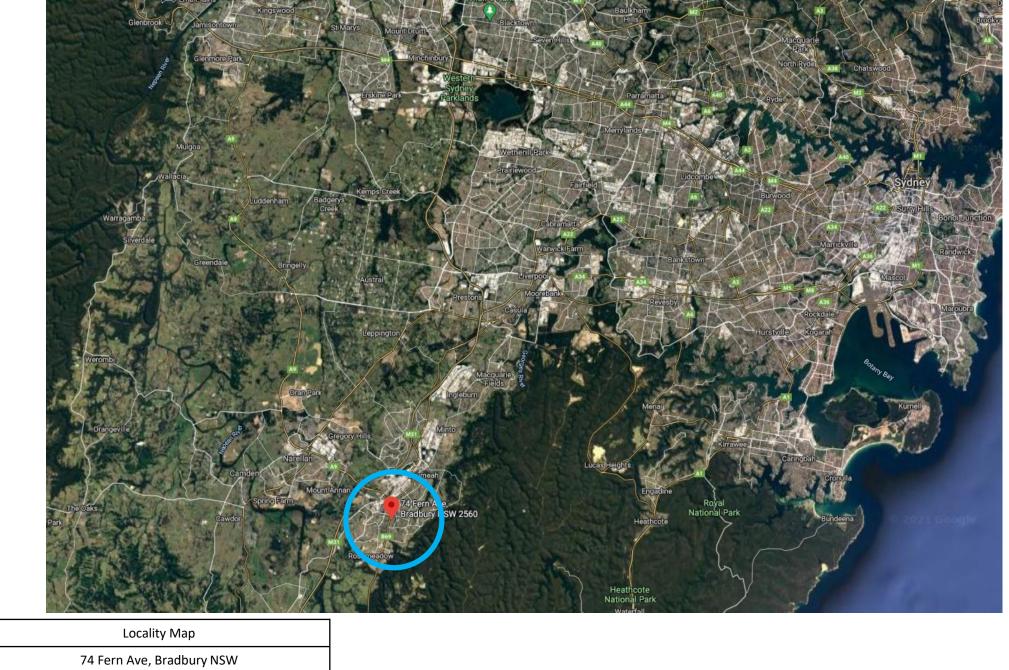
The results of this assessment are based on the site conditions and regulatory criteria identified at the time of the site inspection. REE will not be liable to revise the report to account for any changes in site characteristics, regulatory requirements, assessment criteria or the availability of additional information, subsequent to the issue date of this report. The scope and period of REEs' services are subject to restrictions and limitations. REE did not perform a complete assessment of all possible conditions that may exist at the site.

REE takes no responsibility or liability for errors in any data obtained from scientific laboratories, regulatory agencies, statements from sources outside of REE, or developments resulting from situations outside the scope of this project.

All conclusions and recommendations regarding the site are the opinion of REE. Opinions are judgements, which are based on our understanding and interpretation of current regulatory standards and should not be construed as legal opinions.

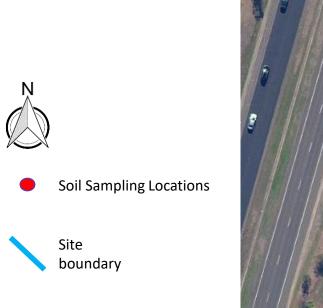
We trust the information contained within this document meets your requirements. Should you have any queries, please do not hesitate to contact the REE.

13. REFERENCES


- Department of Urban Affairs and Planning, NSW Environmental Protection Authority, Managing Land Contamination – Planning Guidelines – SEPP 55 – Remediation of Land, 1998.
- Department of Primary Industries, The Geological Map of Wollongong- Port Hacking, *Geological Series Sheet 9029-9129*, Scale 1:100,000, Edition 1, 1985.
- Google Earth, https://www.google.com/earth.
- National Environment Protection (Assessment of Site Contamination) Measure 1999, Schedule B1 – Guideline on Investigation Levels for Soil and Groundwater, 2013.
- National Environment Protection (Assessment of Site Contamination) Measure 1999, *Schedule B2 Guideline on Site Characterisation*, 2013.
- Noel Arnold & Associates Pty Ltd, *Preliminary Site Investigation and Limited Soil Investigation*, dated March 2012.
- NSW Department of Environment and Conservation, *Guidelines for the Assessment and Management of Groundwater Contamination*, 2007.
- NSW Environmental Protection Authority, *Contaminated Land Management, Guidelines for the NSW Site Auditor Scheme (3rd Edition)*, 2017.
- NSW Environmental Protection Authority, *Guidelines on the Duty to Report Contamination under Contaminated Land Management Act*, 1997.
- NSW Environmental Protection Authority, *Sampling Design Guidelines*, 1995.

- NSW Environmental Protection Authority, *Waste Classification Guidelines Part 1: Classifying Waste*, 2014.
- NSW Office of Environment & Heritage, Guidelines for Consultants Reporting on Contaminated Sites, 2011.
- Six Maps, https://www.maps.six.nsw.gov.au.
- State Environment Protection Policy 55 (SEPP 55). *Remediation of Land Under the Environmental Planning and Assessment Act,* 1998.
- WaterNSW, waternsw.com.au.
- Western Australia Department of Health, *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*, 2009.
- Work Health and Safety Act, 2011.
- Work Health and Safety Regulation, 2017.

FIGURES



> Site location

	Figure 1	Locality Map
Source: Google Earth 2020	Project	74 Fern Ave, Bradbury NS

Figure	Site Plan with Sample
2	Locations
Project	74 Fern Ave, Bradbury

RAW EARTH

AEC 1 – Cleared Area 1

AEC 2 – Cleared Area 2

AEC 3 – Pool Area

AEC 4 – Carparking Area

Site boundary

Figure	Site Plan with Areas of
3	Environmental Concern
Project	74 Fern Ave, Bradbury

Photographic Log

Photograph 1: AEC 1 looking south.

Photograph 2: AEC 1 looking west.

Photograph 3: AEC 1 looking north-west.

Photograph 5: Pump shed adjacent pool area (AEC 3).

Photograph 6: AEC 3, pool area, looking south.

Photograph 1: AEC 3, pool area, looking east towards pool pump shed.

Photograph 2: AEC 4, carparking area.

Photograph 3: Main structure onsite. Security fencing surrounds the perimeter of the building. Area was inaccessible at the time of the inspection.

Photograph 4: Secondary structure onsite.

APPENDIX B

LABORATORY ANALYTICAL RESULTS

			Project	Bradbury		Sample Name	SE216722.00	1 SE216722.00	2 SE216722.0	3 SE216722.0	04 SE216722.00	5 SE216722.00	06 SE216722.0	007 SE216722.0	08 SE216722.	009 SE216722.0	10 SE216722.0	11 SE216722.0	012 SE216722.0	013 SE216722.	014 SE216722.015	
						Description Sample Date	S1 19/2/2021	S2 19/2/2021	S3 19/2/2021	S4 19/2/2021	S5 19/2/2021	S6 19/2/2021	S7 19/2/2021	S8 19/2/2021	S9 19/2/2021	S10 19/2/2021	S11 19/2/2021	S12 19/2/2021	S13 19/2/2021	S14 19/2/2021	S15 19/2/2021	
				Health	Management Limits –	Matrix Soil Ecological	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
			Health Investigation	Screening Levels A (HSLs	Residential, parkland and	Assessment Levels - Urban residential																
			Level A (HILs A)	A) 0m - 1m CLAY	public open space - Fine	and public open space																
Analyte Name Benzene	Units mg/kg	Reporting Limit 0.1		1.0	Soil	65.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Toluene Ethylbenzene	mg/kg mg/kg	0.1		1800.0 490.0		105.0 125.0	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
m/p-xylene o-xylene	mg/kg mg/kg	0.2					<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	
Total Xylenes	mg/kg	0.3	1	330.0		45.0	<0.3	< 0.3	<0.3	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	
Total BTEX Naphthalene	mg/kg ma/ka	0.6		1.0		170.0	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	<0.6 <0.1	
TRH C6-C9	mg/kg	20					<20	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	<20 <0.1	
Benzene (F0) TRH C6-C10	mg/kg mg/kg	25	i	270			<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	
TRH C6-C10 minus BTEX (F1) TRH C10-C14	mg/kg mg/kg	25 20			800	180	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	<25 <20	
TRH C15-C28 TRH C29-C36	mg/kg mg/kg	45 45					<45	4 <45 <45	<45 <45	<45 <45	<45 <45	<45 <45	<45	<45 <45	<45	<45 <45	<45 <45	<45 <45	<45 <45	<45 <45	<45 <45	
TRH C29-C36 TRH C37-C40	mg/kg	45					<45 <100	<45 <100	<45 <100	<45 <100	<100	<45 <100	<45 <100	<45 <100	<45 <100	<45 <100	<45 <100	<45 <100	<45 <100	<100	<45 <100	
TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg mg/kg	25 25		210	1000		<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	
TRH >C16-C34 (F3)	mg/kg	90	1		3500	1300	12	0 <90	<90	<90	<90	<90	<90	<90	<90	<90	<90	<90	<90	<90	<90	
TRH >C34-C40 (F4) TRH C10-C36 Total	mg/kg mg/kg	120 110)		10000		<110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	<120 <110	
TRH >C10-C40 Total (F bands) Naphthalene	mg/kg mg/kg	210 0.1				170.0	<210	<210 .1 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	<210 <0.1	
2-methylnaphthalene	mg/kg mg/kg	0.1					<0.1	<0.1 2 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
1-methylnaphthalene Acenaphthylene	mg/kg	0.1 0.1					1.	0 <0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	
Acenaphthene Fluorene	mg/kg mg/kg	0.1					0.	.2 <0.1 .6 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
Phenanthrene Anthracene	mg/kg mg/kg	0.1					5	7 <0.1 0 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	
Fluoranthene	mg/kg	0.1					5	6 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.1 0.1					5.	.4 <0.1 .1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
Chrysene Benzo(b&)ifluoranthene	mg/kg mg/kg	0.1					1.	9 <0.1 5 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Benzo(b&))nuoranthene Benzo(k)fluoranthene	mg/kg	0.1					1	1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.1 0.1				1.4	1.	<mark>.8</mark> <0.1 5 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
Dibenzo(ah)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.1					0.	.1 <0.1 .0 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	
Carcinogenic PAHs, BaP TEQ <lor=0< th=""><th>TEQ (mg/kg)</th><th>0.2</th><th>3.0</th><th></th><th></th><th></th><th>2</th><th>6 < 0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th><0.2</th><th></th></lor=0<>	TEQ (mg/kg)	0.2	3.0				2	6 < 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Carcinogenic PAHs, BaP TEQ <lor=lor Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" th=""><th>TEQ (mg/kg) TEQ (mg/kg)</th><th>0.3</th><th></th><th></th><th></th><th></th><th>2</th><th>.6 <0.3 .6 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th><0.3 <0.2</th><th></th></lor=lor></lor=lor 	TEQ (mg/kg) TEQ (mg/kg)	0.3					2	.6 <0.3 .6 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	<0.3 <0.2	
Total PAH (18) Total PAH (NEPM/WHO 16)	mg/kg mg/kg	0.8 0.8	300.0				3	1 <0.8 1 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	<0.8 <0.8	
Hexachlorobenzene (HCB)	mg/kg	0.1	10.0				<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Alpha BHC Lindane	mg/kg mg/kg	0.1 0.1					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Heptachlor Aldrin	mg/kg mg/kg	0.1					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Beta BHC	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Delta BHC Heptachlor epoxide	mg/kg mg/kg	0.1 0.1	7.0				<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
o.p'-DDE Alpha Endosulfan	mg/kg mg/kg	0.1					<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Gamma Chlordane Alpha Chlordane	mg/kg mg/kg	0.1	50.0				<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A	N.A. N.A	N.A. N.A.	
trans-Nonachlor	mg/kg	0.1					<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
p,p'-DDE Dieldrin	mg/kg mg/kg	0.1 0.2	7.0				<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Endrin o.p'-DDD	mg/kg mg/kg	0.2	10.0				<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	N.A. N.A	N.A. N.A.	N.A.	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N.A	N.A. N A	
o,p'-DDT	mg/kg	0.1				180.0	<0.1	<0.1	<0.1	<0.1	< 0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Beta Endosulfan p.p'-DDD	mg/kg mg/kg	0.2 0.1					<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
p,p'-DDT Endosulfan sulphate	mg/kg mg/kg	0.1	300.0			180.0	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Endrin Aldehyde Methoxychlor	mg/kg mg/kg	0.1	10.0				<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A.	N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	N.A.	N.A. N.A.	N.A. N.A.	
Endrin Ketone	mg/kg	0.1	10.0				<0.1	<0.1	<0.1	<0.1	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Isodrin Mirex	mg/kg mg/kg	0.1 0.1					<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Total CLP OC Pesticides Arochlor 1016	mg/kg mg/kg	1 0.2					<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	<1 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Arochlor 1221 Arochlor 1232	mg/kg mg/kg	0.2	2				<0.2	<0.2	<0.2	<0.2	<0.2	N.A.	N.A. N.A	N.A.	N.A.	N.A.	N.A.	N.A. N.A	N.A.	N.A.	N.A. N.A	
Arochlor 1242	mg/kg	0.2	2				<0.2	<0.2	<0.2	<0.2	< 0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Arochlor 1248 Arochlor 1254	mg/kg mg/kg	0.2					<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Arochlor 1260	mg/kg	0.2	2				<0.2	<0.2	<0.2	<0.2	<0.2	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	
Arochlor 1262 Arochlor 1268	mg/kg mg/kg	0.2					<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
Total PCBs (Arochlors) Arsenic, As	mg/kg mg/kg	1	1 100			100	<1	<1 4	<1 5	<1 5	<1	N.A. 7	N.A. 5	N.A. 5	N.A. 8	N.A. 7	N.A. 6	N.A. 7	N.A. 6	N.A. 6	N.A. 6 5	
Cadmium, Cd	mg/kg	0.3	20.0			100	<0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	
Chromium, Cr Copper, Cu	mg/kg mg/kg	0.5 0.5	7000.0				2	5 1	15	28	21	20	27	18	6.6 30	13 21	19	29	25	8.3 25	26 21	
Lead, Pb Nickel, Ni	mg/kg mg/kg	1	300			1100	4		22				20 9.1	26 6.9	29 13			32 17		30 9.0	31 19 10 8.0	
Zinc, Zn	mg/kg	2	8000				6	6 3	31	54	64	50	48	40	84	39	29 1	00	65	71	73 37	
Mercury % Moisture	mg/kg %w/w	0.05 1					0.1	6 < 0.05 2 14	<0.05	<0.05 3.5 21		<0.05 6.7 10	0.2 1	0.91 <0.05 18.4 1				<0.05 8.4 2	<0.05 20.7 2	21.1	0.06 <0.05 19.6 9.0	
Asbestos Detected Estimated Asbestos Fibres	No unit %w/w	0.01	0.01 (WA DoH)				Yes <0.01	Yes >0.01	No <0.01	No <0.01	No <0.01	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	N.A. N.A.	
		5.01											-	-	-	-		-	-	-		

CLIENT DETAILS Contact Client Address	DANIEL TAYLOR RAW EARTH ENVIRONMENTAL 4/140 HASTINGS PARADE BONDI NSW 2026	LABORATORY DETAI Manager Laboratory Address	LS Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0409 492 988	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	daniel@rawearthenvironmental.com.au	Email	au.environmental.sydney@sgs.com
Project	DSI-BRAD	SGS Reference	SE216722 R0
Order Number	(Not specified)	Date Received	19 Feb 2021
Samples	19	Date Reported	26 Feb 2021

COMMENTS -

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures due to large volume. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental health and safety recommends supplying approximately 50-100g of sample in a separate container.

Sample #1: Asbestos found in approx 6x4x2mm cement sheet fragment. Sample #2: Asbestos found in approx 10x6x3mm cement sheet fragment.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Kamrul AHSAN Senior Chemist

for

Bennet LO Senior Organic Chemist/Metals Chemis

Kintal

Ly Kim HA Organic Section Head

fune

Huong CRAWFORD Production Manager

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.001 Soil 19 Feb 2021 S1	SE216722.002 Soil 19 Feb 2021 S2	SE216722.003 Soil 19 Feb 2021 S3	SE216722.004 Soil 19 Feb 2021 S4
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 22/2/2021						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%	-	86 97	88 101	78 85	77 83
Bromofluorobenzene (Surrogate)	%	-	70	72	61	60
Totals						
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN4	I33 Tested: 22	2/2/2021				
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
d4-1,2-dichloroethane (Surrogate)	%	-	86	88	78	77
d8-toluene (Surrogate)	%	-	97	101	85	83
Bromofluorobenzene (Surrogate)	%	-	70	72	61	60
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.001 Soil 19 Feb 2021 S1	SE216722.002 Soil 19 Feb 2021 S2	SE216722.003 Soil 19 Feb 2021 S3	SE216722.004 Soil 19 Feb 2021 S4
Parameter TRH (Total Recoverable Hydrocarbons) in Soil Meth	Units	LOR d: 22/2/2021				
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	94	<45	<45	<45
TRH C29-C36 TRH C37-C40	mg/kg	45	<45	<45	<45	<45
	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	120	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Method: AN420 Te	ested: 22/2/2021				
Naphthalene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	1.0	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	0.6	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	5.7	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	1.0	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	5.6	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	5.4	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	2.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	1.9	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	1.5	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	1.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	1.8	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	1.5	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	1.0	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>2.6</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	2.6	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>2.6</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	2.6	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>2.6</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	2.6	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	31	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	31	<0.8	<0.8	<0.8
Surrogates						
d5-nitrobenzene (Surrogate)	%	_	88	115	125	111
2-fluorobiphenyl (Surrogate)	%		92	78	80	102
d14-p-terphenyl (Surrogate)	%	-	88	97	92	95
OC Pesticides in Soil Method: AN420 Tested: 22/				I		
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC		0.1	<0.1	<0.1	<0.1	<0.1
	ma/ka	0.1	-	-	-	-
Beta BHC Delta BHC	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC Delta BHC Heptachlor epoxide	mg/kg	0.1				
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE	mg/kg mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC Delta BHC Heptachlor epoxide o.p ⁻ DDE Alpha Endosulfan	mg/kg mg/kg mg/kg	0.1 0.1 0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1
Beta BHC Delta BHC Heptachlor epoxide o,p ¹ DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1 0.1	<0.1 <0.2 <0.1 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1 <0.1
Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1	<0.1 <0.2 <0.1 <0.1

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.001 Soil 19 Feb 2021 S1	SE216722.002 Soil 19 Feb 2021 S2	SE216722.003 Soil 19 Feb 2021 S3	SE216722.004 Soil 19 Feb 2021 S4
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 22/2	/2021 (continued	1)				
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1
Tetrachloro-m-xylene (TCMX) (Surrogate) PCBs in Soil Method: AN420 Tested: 22/2/2021	%	-	112	106	106	105
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1
Surrogates						
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	112	106	106	105
Total Recoverable Elements in Soil/Waste Solids/Mater	ials by ICPOES	Method: AN040/	AN320 Tested	I: 23/2/2021		
Arsenic, As	mg/kg	1	4	5	5	7
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	7.2	7.3	7.1	8.8
Copper, Cu	mg/kg	0.5	25	15	28	21

Mercury in Soil Method: AN312 Tested: 23/2/2021

Mercury mg/kg 0.05 0.16 <0.05							
	Mercury	mg/kg	0.05	0.16	<0.05	<0.05	<0.05

mg/kg

mg/kg

mg/kg

0.5

1

2

14

42

66

5.6

22

31

8.6

22

54

11

28

64

Nickel, Ni

Lead, Pb

Zinc, Zn

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.001 Soil 19 Feb 2021 S1	SE216722.002 Soil 19 Feb 2021 S2	SE216722.003 Soil 19 Feb 2021 S3	SE216722.004 Soil 19 Feb 2021 S4
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 22/2/20	21					
% Moisture	%w/w	1	13.2	14.7	18.5	22.6
Fibre Identification in soil Method: AN602 Tested	: 25/2/2021					
Fibre Identification in soil Method: AN602 Tested FibreID Asbestos Detected	: 25/2/2021	-	Yes	Yes	No	No
FibreID Asbestos Detected			Yes	Yes	No	No
FibreID		0.01	Yes	Yes >0.01	No <	No <0.01
FibreID Asbestos Detected SemiQuant	No unit					

Total Arsenic	μg/L	1	-	-	-	-
Total Cadmium	µg/L	0.1	-	-	-	-
Total Chromium	µg/L	1	-	-	-	-
Total Copper	µg/L	1	-	-	-	-
Total Lead	µg/L	1	-	-	-	-
Total Nickel	µg/L	1	-	-	-	-
Total Zinc	µg/L	5	-	-	-	-

Mercury (total) in Water Method: AN311(Perth) /AN312 Tested: 23/2/2021

	Total Mercury	mg/L	0.0001	-	-	-	-
--	---------------	------	--------	---	---	---	---

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.005 Soil 19 Feb 2021 S5	SE216722.006 Soil 19 Feb 2021 S6	SE216722.007 Soil 19 Feb 2021 S7	SE216722.008 Soil 19 Feb 2021 S8
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 22/2/2021						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%	-	80 77	100 97	103 100	90 86
Bromofluorobenzene (Surrogate)	%	-	77	98	100	88
Totals						
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN4	133 Tested: 22	2/2/2021		·		
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
d4-1,2-dichloroethane (Surrogate)	%	-	80	100	103	90
d8-toluene (Surrogate)	%	-	77	97	100	86
Bromofluorobenzene (Surrogate)	%	-	77	98	100	88
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

		Sample Number	SE216722.005	SE216722.006	SE216722.007	SE216722.00
		Sample Matrix Sample Date Sample Name	Soil 19 Feb 2021 S5	Soil 19 Feb 2021 S6	Soil 19 Feb 2021 S7	Soil 19 Feb 2021 S8
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Metho	od: AN403 Teste	d: 22/2/2021				
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
PAH (Polynuclear Aromatic Hydrocarbons) in Soil M	ethod: AN420 To	ested: 22/2/2021				
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	105	92	105	105
2-fluorobiphenyl (Surrogate)	%	-	92	92	78	94
d14-p-terphenyl (Surrogate) OC Pesticides in Soil Method: AN420 Tested: 22/2	% /2021	-	83	89	89	82
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	_	-	
Alpha BHC	mg/kg	0.1	<0.1	-	-	-
Lindane	mg/kg	0.1	<0.1	-	-	-
Heptachlor	mg/kg	0.1	<0.1	_	-	
Aldrin	mg/kg	0.1	<0.1	_	-	
Beta BHC	mg/kg	0.1	<0.1	_	-	
Delta BHC	mg/kg	0.1	<0.1	-	-	-
Heptachlor epoxide	mg/kg	0.1	<0.1	-	-	-
p,p'-DDE	mg/kg	0.1	<0.1	-	-	_
Alpha Endosulfan	mg/kg	0.2	<0.2	-	-	_
Samma Chlordane	mg/kg	0.1	<0.1	-	-	_
	mg/kg	0.1	<0.1	-	-	_
Alpha Chlordane				_	_	_
	ma/ka	0.1	<0.1			
trans-Nonachlor	mg/kg mg/kg	0.1	<0.1	_	-	_
Alpha Chlordane trans-Nonachlor p.p ⁻ DDE Dieldrin	mg/kg mg/kg mg/kg	0.1	<0.1 <0.1 <0.2			

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.005 Soil 19 Feb 2021 S5	SE216722.006 Soil 19 Feb 2021 S6	SE216722.007 Soil 19 Feb 2021 S7	SE216722.008 Soil 19 Feb 2021 S8
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 22/2/	2021 (continued)				
o,p'-DDD	mg/kg	0.1	<0.1	-	-	-
o,p'-DDT	mg/kg	0.1	<0.1	-	-	-
Beta Endosulfan	mg/kg	0.2	<0.2	-	-	-
p,p'-DDD	mg/kg	0.1	<0.1	-	-	-
p,p'-DDT	mg/kg	0.1	<0.1	-	-	-
Endosulfan sulphate	mg/kg	0.1	<0.1	-	-	-
Endrin Aldehyde	mg/kg	0.1	<0.1	-	-	-
Methoxychlor	mg/kg	0.1	<0.1	-	-	-
Endrin Ketone	mg/kg	0.1	<0.1	-	-	-
Isodrin	mg/kg	0.1	<0.1	-	-	-
Mirex	mg/kg	0.1	<0.1	-	-	-
Total CLP OC Pesticides	mg/kg	1	<1	-	-	-
Surrogates	%		106	-]
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	100	-	-	-
PCBs in Soil Method: AN420 Tested: 22/2/2021						
Arochlor 1016	mg/kg	0.2	<0.2	-	-	-
Arochlor 1221	mg/kg	0.2	<0.2	-	-	-
Arochlor 1232	mg/kg	0.2	<0.2	-	-	
						-
Arochlor 1242	mg/kg	0.2	<0.2	-	-	-
Arochlor 1242 Arochlor 1248	mg/kg mg/kg	0.2	<0.2 <0.2	-	-	
						-
Arochlor 1248	mg/kg	0.2	<0.2	-	-	-
Arochlor 1248 Arochlor 1254	mg/kg mg/kg	0.2	<0.2 <0.2	-	-	-
Arochlor 1248 Arochlor 1254 Arochlor 1260	mg/kg mg/kg mg/kg	0.2 0.2 0.2	<0.2 <0.2 <0.2	-	-	
Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2		- - - -	- - - - -
Arochlor 1248 Arochlor 1254 Arochlor 1260 Arochlor 1262 Arochlor 1268	mg/kg mg/kg mg/kg mg/kg	0.2 0.2 0.2 0.2 0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	- - - - -	- - - - -	- - - - - - -

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 23/2/2021

Arsenic, As	mg/kg	1	7	5	5	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	10	8.0	9.6	6.6
Copper, Cu	mg/kg	0.5	20	27	18	30
Nickel, Ni	mg/kg	0.5	11	9.1	6.9	13
Lead, Pb	mg/kg	1	26	20	26	29
Zinc, Zn	mg/kg	2	50	48	40	84

Mercury in Soil Method: AN312 Tested: 23/2/2021

Mercury	mg/kg	0.05	<0.05	<0.05	0.91	<0.05

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.005 Soil 19 Feb 2021 S5	SE216722.006 Soil 19 Feb 2021 S6	SE216722.007 Soil 19 Feb 2021 S7	SE216722.008 Soil 19 Feb 2021 S8
Parameter	Units	LOR				
Moisture Content Method: AN002 Tested: 22/2/2021						
% Moisture	%w/w	1	16.7	10.2	18.4	13.0
Fibre Identification in soil Method: AN602 Tested: 25/2 FibreID	2/2021					
Fibre Identification in soil Method: AN602 Tested: 25/2		1	16.7 No	-	-	
Fibre Identification in soil Method: AN602 Tested: 25/2 FibreID	2/2021					

(Т otal)

Total Arsenic	μg/L	1	-	-	-	-
Total Cadmium	μg/L	0.1	-	-	-	-
Total Chromium	μg/L	1	-	-	-	-
Total Copper	μg/L	1	-	-	-	-
Total Lead	μg/L	1	-	-	-	-
Total Nickel	µg/L	1	-	-	-	-
Total Zinc	μg/L	5	-	-	-	-

Mercury (total) in Water Method: AN311(Perth) /AN312 Tested: 23/2/2021

Total Mercury	mg/L	0.0001	-	-	-	-

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.009 Soil 19 Feb 2021 S9	SE216722.010 Soil 19 Feb 2021 S10	SE216722.011 Soil 19 Feb 2021 S11	SE216722.012 Soil 19 Feb 2021 S12
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 22/2/2021						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Surrogates d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%	-	89 83	85 79	80 73	82 75
Bromofluorobenzene (Surrogate)	%	-	86	83	78	80
Totals				II		
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6
Volatile Petroleum Hydrocarbons in Soil Method: AN	433 Tested: 22	2/2/2021				
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Surrogates						
d4-1,2-dichloroethane (Surrogate)	%	-	89	85	80	82
d8-toluene (Surrogate)	%	-	83	79	73	75
Bromofluorobenzene (Surrogate)	%	-	86	83	78	80
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

SE216722 R0

	Sample Number	SE216722.009	SE216722.010	SE216722.011	SE216722.012
	Sample Matrix Sample Date Sample Name	Soil 19 Feb 2021 S9	Soil 19 Feb 2021 S10	Soil 19 Feb 2021 S11	Soil 19 Feb 2021 S12
Units	LOR				
od: AN403 Tested	d: 22/2/2021				
mg/kg	20	<20	<20	<20	<20
mg/kg	45	<45	<45	<45	<45
mg/kg	45	<45	<45	<45	<45
mg/kg	100	<100	<100	<100	<100
					<110
mg/kg	210	<210	<210	<210	<210
mg/kg	25	<25	<25	<25	<25
mg/kg	25	<25	<25	<25	<25
mg/kg	90	<90	<90	<90	<90
mg/kg	120	<120	<120	<120	<120
ethod: AN420 Te	sted: 22/2/2021				
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3
TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2
mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
mg/kg	0.8	<0.8	<0.8	<0.8	<0.8
%	-	123	105	95	94
%	-	94	78	85	85
%	-	94	90	97	101
2021					
mg/kg	0.1	-	-	-	-
mg/kg	0.1	-	-	-	-
mg/kg	0.1	-	-	-	-
mg/kg	0.1	-	-	-	-
mg/kg	0.1	-	-	-	-
iiig/ikg		-	_	-	-
mg/kg	0.1	-	1		
	0.1	-	-	-	-
mg/kg			-	-	-
mg/kg mg/kg	0.1	-			
mg/kg mg/kg mg/kg	0.1	-	-	-	-
mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1	-	-	-	-
mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2	- - - -		-	-
mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.2 0.1	- - - -		- - - -	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1	- - - - - -	- - - -	- - - - -	- - - - -
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.2 0.1 0.1 0.1 0.1	- - - - - - -	- - - - - - -	- - - - - -	- - - - - -
	AN403 Tester mg/kg mg/kg mg/kg	Sample Matrix Sample Name Units LOR mg/kg 20 mg/kg 45 mg/kg 100 mg/kg 100 mg/kg 100 mg/kg 110 mg/kg 11 mg/kg 0.1 mg/kg	Sample Date Sample Name Soil 19 Feb 2021 S9 Units LOR mg/kg 20 <20	Sample Matrix Sample Date Soil 19 Feb 2021 S10 Soil 19 Feb 2021 S10 Lints LOR mg/kg 20 <20 <20 mg/kg 45 <445 <445 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 100 <100 <100 mg/kg 210 <225 <25 mg/kg 220 <120 <100 mg/kg 0.1 <0.1 <0.1 mg/kg	Sample Date Sample Name Soll 19 Feb 2021 S10 Soll 19 Feb 2021 S10 Soll 19 Feb 2021 S10 Soll 19 Feb 2021 S10 Units LOR mgkg 20 <20

SE216722 R0

-

Parameter Units LOR OC Pesticides in Soll Method: AN420 Testei: 22/2/2/11 (continuou)			Sample Number Sample Matrix Sample Date Sample Name	SE216722.009 Soil 19 Feb 2021 S9	SE216722.010 Soil 19 Feb 2021 S10	SE216722.011 Soil 19 Feb 2021 S11	SE216722.012 Soil 19 Feb 2021 S12
op-bDD op-bDT mg/g 0.1 - - - - - g-p-DT mg/g 0.2 - - - - - g-bDD mg/g 0.1 - - - - - g-bDT mg/g 0.1 - <th>Parameter</th> <th>Units</th> <th>LOR</th> <th></th> <th></th> <th></th> <th></th>	Parameter	Units	LOR				
op-DOT mg/kg 0.1 1 1 1 1 Bete Endoculfan mg/kg 0.2 - <	OC Pesticides in Soil Method: AN420 Tested: 22/2	2021 (continue	ed)				
Beta Endosulfanmgkg0.2pp'-DODmgkg0.1pp'-DOTmgkg0.1Endosulfan sulphatemgkg0.1Endosulfan sulphatemgkg0.1Endin Aldehydemgkg0.1Endin Aldehydemgkg0.1 <td< td=""><td>o,p'-DDD</td><td>mg/kg</td><td>0.1</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	o,p'-DDD	mg/kg	0.1	-	-	-	-
p-0D0 mg/kg 0.1 - I I I p-0DT mg/kg 0.1 I	o,p'-DDT	mg/kg	0.1	-	-	-	-
p.p-DOT mgkq 0.1 - - - - - Endsulfan sulphate mgkq 0.1 -	Beta Endosulfan	mg/kg	0.2	-	-	-	-
The design sulphate mg/kg 0.1 - <td>p,p'-DDD</td> <td>mg/kg</td> <td>0.1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	p,p'-DDD	mg/kg	0.1	-	-	-	-
Indin Adelyde Ingkg 0.1 I	p,p'-DDT	mg/kg	0.1	-	-	-	-
Methoxychlormg/kg0.1Endin Ketonemg/kg0.1Isodrinmg/kg0.1Mirekmg/kg0.1Total CP OC Pesticidesmg/kg0.1Surrogatesmg/kg1PCBs in SoilMethod: AN420Tested: 22/2/021% <td>Endosulfan sulphate</td> <td>mg/kg</td> <td>0.1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Endosulfan sulphate	mg/kg	0.1	-	-	-	-
Endrin Ketone mg/kg 0.1 Isodin mg/kg 0.1 Mirex mg/kg 0.1 Total CLP OC Pesticides mg/kg 1 Surrogates PCBs in Soil Method: AN420 Tested: 22/2/2021	Endrin Aldehyde	mg/kg	0.1	-	-	-	-
IsodinMukg0.1IIIMirexmg/kg0.1IIIITotal CLP OC Pesticidesmg/kg1IIIIISurrogatesPCBs in Soil Method: AN420 Tested: 22/2/2021Arochior 1016mg/kg0.2IIIIIArochior 1221mg/kg0.2IIIIIIArochior 1232mg/kg0.2II </td <td>Methoxychlor</td> <td>mg/kg</td> <td>0.1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Methoxychlor	mg/kg	0.1	-	-	-	-
Mirex Mg/kg 0.1 Total CLP OC Pesticides Mg/kg 1 Surrogates PCBs in Soil Method: AN420 Tested: 22/2/2021 Arochlor 1016 Mg/kg 0.2 Arochlor 1221 Mg/kg 0.2 </td <td>Endrin Ketone</td> <td>mg/kg</td> <td>0.1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Endrin Ketone	mg/kg	0.1	-	-	-	-
Total CLP OC Pesticidesmg/kg1SurrogatesTetrachloro-m-xylene (TCMX) (Surrogate)%PCBs in SoilMethod: AN420Tested: 22/2/2021Arochlor 1016mg/kg0.2Arochlor 1221mg/kg0.2Arochlor 1232mg/kg0.2Arochlor 1242mg/kg0.2Arochlor 1254mg/kg0.2Arochlor 1260mg/kg0.2Arochlor 1262mg/kg0.2Arochlor 1268mg/kg0.2	Isodrin	mg/kg	0.1	-	-	-	-
Surrogates PCBs in Soil Method: AN420 Tested: 22/2/2021 Arochlor 1016 mg/kg 0.2 - - - - Arochlor 1221 mg/kg 0.2 - - - - - Arochlor 1232 mg/kg 0.2 - - - - - Arochlor 1242 mg/kg 0.2 - - - - - Arochlor 1242 mg/kg 0.2 - - - - - Arochlor 1242 mg/kg 0.2 - <td>Mirex</td> <td>mg/kg</td> <td>0.1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Mirex	mg/kg	0.1	-	-	-	-
Tetachloro-m-xylene (TCMX) (Surrogate)% </td <td>Total CLP OC Pesticides</td> <td>mg/kg</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Total CLP OC Pesticides	mg/kg	1	-	-	-	-
PCBs in SoilMethod: AN420Tested: 22/2/2021Arochlor 1016mg/kg0.2Arochlor 1221mg/kg0.2Arochlor 1232mg/kg0.2Arochlor 1242mg/kg0.2Arochlor 1248mg/kg0.2Arochlor 1254mg/kg0.2Arochlor 1260mg/kg0.2Arochlor 1262mg/kg0.2Arochlor 1268mg/kg0.2	Surrogates						
Arochlor 1016 mg/kg 0.2 - - - - - Arochlor 1221 mg/kg 0.2 -	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	-	-	-
Arochlor 1221 Mg/kg 0.2 -							
Arochlor 1232 mg/kg 0.2 -							-
Arochlor 1242 Mg/kg 0.2 -							-
Arochlor 1248 Mg/kg 0.2							
Arochlor 1254 Mmg/kg 0.2							
Arochlor 1260 mg/kg 0.2 -							
Arochlor 1262 mg/kg 0.2 -							
Arochlor 1268 mg/kg 0.2 - - - -							

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate) % - - -

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 23/2/2021

Arsenic, As	mg/kg	1	7	6	7	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	12	8.9	8.0
Copper, Cu	mg/kg	0.5	21	19	29	25
Nickel, Ni	mg/kg	0.5	9.3	9.4	17	8.9
Lead, Pb	mg/kg	1	27	24	32	27
Zinc, Zn	mg/kg	2	39	29	100	65

Mercury in Soil Method: AN312 Tested: 23/2/2021

Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.009 Soil 19 Feb 2021 S9	SE216722.010 Soil 19 Feb 2021 S10	SE216722.011 Soil 19 Feb 2021 S11	SE216722.012 Soil 19 Feb 2021 S12					
Parameter	Units	LOR									
Moisture Content Method: AN002 Tested: 22/2/2021											
% Moisture	%w/w	1	19.1	18.4	18.4	20.7					
	00/0/0004										
Fibre Identification in soil Method: AN602 Tested: FibreID Asbestos Detected Image: Comparison of the second seco	: 26/2/2021		-	-	-						
FibreID			-	-							
FibreID Asbestos Detected		0.01	-	-		· · ·					

Total Arsenic	μg/L	1	-	-	-	-
Total Cadmium	μg/L	0.1	-	-	-	-
Total Chromium	μg/L	1	-	-	-	-
Total Copper	μg/L	1	-	-	-	-
Total Lead	μg/L	1	-	-	-	-
Total Nickel	µg/L	1	-	-	-	-
Total Zinc	μg/L	5	-	-	-	-

Mercury (total) in Water Method: AN311(Perth) /AN312 Tested: 23/2/2021

	Total Mercury	mg/L	0.0001	-	-	-	-
--	---------------	------	--------	---	---	---	---

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.013 Soil 19 Feb 2021 S13	SE216722.014 Soil 19 Feb 2021 S14	SE216722.015 Soil 19 Feb 2021 S15	SE216722.016 Soil 19 Feb 2021 QS1
Parameter	Units	LOR				
VOC's in Soil Method: AN433 Tested: 22/2/2021						
Monocyclic Aromatic Hydrocarbons						
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	-
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	-
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Polycyclic VOCs						
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Surrogates d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%		88 83	80 73	98 92	
Bromofluorobenzene (Surrogate)	%	-	84	78	94	-
Totals				I		
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	-
Volatile Petroleum Hydrocarbons in Soil Method: AN4	433 Tested: 22	2/2/2021		· ·		
TRH C6-C10	mg/kg	25	<25	<25	<25	-
TRH C6-C9	mg/kg	20	<20	<20	<20	-
Surrogates						
d4-1,2-dichloroethane (Surrogate)	%	-	88	80	98	-
d8-toluene (Surrogate)	%	-	83	73	92	-
Bromofluorobenzene (Surrogate)	%	-	84	78	94	-
VPH F Bands						
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	-
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	-

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.013 Soil 19 Feb 2021 S13	SE216722.014 Soil 19 Feb 2021 S14	SE216722.015 Soil 19 Feb 2021 S15	SE216722.016 Soil 19 Feb 2021 QS1
Parameter	Units	LOR				
TRH (Total Recoverable Hydrocarbons) in Soil Metho	d: AN403 Teste	d: 22/2/2021				
TRH C10-C14	mg/kg	20	<20	<20	<20	-
TRH C15-C28	mg/kg	45	<45	<45	<45	-
TRH C29-C36	mg/kg	45	<45	<45	<45	-
TRH C37-C40	mg/kg	100	<100	<100	<100	_
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	_
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	_
TRH F Bands						
TRH >C10-C16	mg/kg	25	<25	<25	<25	-
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	-
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	-
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	-
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Me	ethod: AN420 Te	ested: 22/2/2021				
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	_
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	_
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	-
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	-
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	-
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	-
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	-
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	-
Surrogates						
d5-nitrobenzene (Surrogate)	%	-	94	93	97	-
2-fluorobiphenyl (Surrogate)	%	-	83	96	82	-
d14-p-terphenyl (Surrogate)	%	-	94	91	84	-
OC Pesticides in Soil Method: AN420 Tested: 22/2/	2021					
Hexachlorobenzene (HCB)	mg/kg	0.1	_	-	-	
Alpha BHC		0.1	-	-	-	-
Lindane	mg/kg mg/kg	0.1	-	-	-	-
Lindane	mg/kg mg/kg	0.1	-	-	-	-
Aldrin	mg/kg	0.1	-	-	-	-
Beta BHC	mg/kg	0.1	-	-	-	-
Delta BHC	mg/kg	0.1	-	-	-	-
Heptachlor epoxide	mg/kg	0.1	-	-	-	-
		0.1	-	-	-	-
		0.1	-	-	-	-
o,p'-DDE	mg/kg	0.2		-	-	-
o,p'-DDE Alpha Endosulfan	mg/kg	0.2		_	_	_
o,p'-DDE Alpha Endosulfan Gamma Chlordane	mg/kg mg/kg	0.1	-	-	-	-
o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane	mg/kg mg/kg mg/kg	0.1	-	-	-	-
o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1		-	-	-
o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p,p'-DDE	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1			-	-
o.p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1		-	-	-

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.013 Soil 19 Feb 2021 S13	SE216722.014 Soil 19 Feb 2021 S14	SE216722.015 Soil 19 Feb 2021 S15	SE216722.016 Soil 19 Feb 2021 QS1
Parameter	Units	LOR				
OC Pesticides in Soil Method: AN420 Tested: 26/2/	2021 (continue	d)				
o,p'-DDD	mg/kg	0.1	-	-	-	-
o,p'-DDT	mg/kg	0.1	-	-	-	-
Beta Endosulfan	mg/kg	0.2	-	-	-	-
p,p'-DDD	mg/kg	0.1	-	-	-	-
p,p'-DDT	mg/kg	0.1	-	-	-	-
Endosulfan sulphate	mg/kg	0.1	-	-	-	-
Endrin Aldehyde	mg/kg	0.1	-	-	-	-
Methoxychlor	mg/kg	0.1	-	-	-	-
Endrin Ketone	mg/kg	0.1	-	-	-	-
Isodrin	mg/kg	0.1	-	-	-	-
Mirex	mg/kg	0.1	-	-	-	-
Total CLP OC Pesticides	mg/kg	1	-	-	-	-
Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate)	%		_	_	_	
PCBs in Soil Method: AN420 Tested: 22/2/2021						
Arochlor 1016	mg/kg	0.2	-	-	-	-
Arochlor 1221	mg/kg	0.2	-	-	-	-
Arochlor 1232	mg/kg	0.2	-	-	-	-
Arochlor 1242	mg/kg	0.2	-	-	-	-
Arochlor 1248	mg/kg	0.2	-	-	-	-
Arochlor 1254	mg/kg	0.2	-	-	-	-
Arochlor 1260	mg/kg	0.2	-	-	-	-
Arochlor 1262	mg/kg	0.2	-	-	-	-
Arochlor 1268	mg/kg	0.2	-	-	-	-
Total PCBs (Arochlors)	mg/kg	1	_	_	_	_

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate) % - - - - -

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 23/2/2021

Arsenic, As	mg/kg	1	6	6	5	4
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	8.3	8.4	9.8	7.9
Copper, Cu	mg/kg	0.5	25	26	21	24
Nickel, Ni	mg/kg	0.5	9.0	10	8.0	18
Lead, Pb	mg/kg	1	30	31	19	35
Zinc, Zn	mg/kg	2	71	73	37	52

Mercury in Soil Method: AN312 Tested: 23/2/2021

Mercury	mg/kg	0.05	<0.05	0.06	<0.05	0.12

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.013 Soil 19 Feb 2021 S13	SE216722.014 Soil 19 Feb 2021 S14	SE216722.015 Soil 19 Feb 2021 S15	SE216722.016 Soil 19 Feb 2021 QS1					
Parameter	Units	LOR									
Moisture Content Method: AN002 Tested: 22/2/2021											
% Moisture	%w/w	1	21.1	19.6	9.0	13.4					
Fibre Identification in soil Method: AN602 Tested: FibreID Asbestos Detected	26/2/2021		-	-	-						
FibreID Asbestos Detected	1		-	-	-						
FibreID	1	0.01	-	-	-						

Total Arsenic	µg/L	1	-	-	-	-
Total Cadmium	µg/L	0.1	-	-	-	-
Total Chromium	µg/L	1	-	-	-	-
Total Copper	µg/L	1	-	-	-	-
Total Lead	µg/L	1	-	-	-	-
Total Nickel	µg/L	1	-	-	-	-
Total Zinc	µg/L	5	-	-	-	-

Mercury (total) in Water Method: AN311(Perth) /AN312 Tested: 23/2/2021

	Total Mercury	mg/L	0.0001	-	-	-	-
--	---------------	------	--------	---	---	---	---

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.017 Soil 19 Feb 2021 Trip Blank	SE216722.018 Soil 19 Feb 2021 Trip Spike	SE216722.019 Water 19 Feb 2021 RS1
Parameter	Units	LOR			
VOC's in Soil Method: AN433 Tested: 22/2/2021					
Monocyclic Aromatic Hydrocarbons					
Benzene	mg/kg	0.1	<0.1	[90%]	-
Toluene	mg/kg	0.1	<0.1	[94%]	-
Ethylbenzene	mg/kg	0.1	<0.1	[97%]	-
m/p-xylene	mg/kg	0.2	<0.2	[97%]	-
o-xylene	mg/kg	0.1	<0.1	[96%]	-
Polycyclic VOCs			-0.4		
Naphthalene	mg/kg	0.1	<0.1	-	-
Surrogates d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	%	-	98 90	91 85	-
Bromofluorobenzene (Surrogate)	%	-	94	86	-
Totals					
Total Xylenes	mg/kg	0.3	<0.3	-	-
Total BTEX	mg/kg	0.6	<0.6	-	-
Volatile Petroleum Hydrocarbons in Soil Method: AN4	133 Tested: 22/	2/2021			
TRH C6-C10	mg/kg	25	<25	-	-
TRH C6-C9	mg/kg	20	<20	-	-
Surrogates					
d4-1,2-dichloroethane (Surrogate)	%	-	98	-	-
d8-toluene (Surrogate)	%	-	90	-	-
Bromofluorobenzene (Surrogate)	%	-	94	-	-
VPH F Bands				· · · · ·	
Benzene (F0)	mg/kg	0.1	<0.1	-	-
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25		

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.017 Soil 19 Feb 2021 Trip Blank	SE216722.018 Soil 19 Feb 2021 Trip Spike	SE216722.019 Water 19 Feb 2021 RS1
Parameter	Units	LOR			
TRH (Total Recoverable Hydrocarbons) in Soil Metho	d: AN403 Teste	ed: 26/2/2021			
TRH C10-C14	mg/kg	20	-	-	-
TRH C15-C28	mg/kg	45	-	-	-
TRH C29-C36	mg/kg	45	-	-	-
TRH C37-C40	mg/kg	100	-	-	-
TRH C10-C36 Total	mg/kg	110	-	-	-
TRH >C10-C40 Total (F bands)	mg/kg	210	-	-	-
TRH F Bands					
TRH >C10-C16	mg/kg	25	-	-	-
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	-	-	-
TRH >C16-C34 (F3)	mg/kg	90	-	-	-
TRH >C34-C40 (F4)	mg/kg	120	-	-	-
PAH (Polynuclear Aromatic Hydrocarbons) in Soil Me Naphthalene	ethod: AN420 T	0.1		_	-
2-methylnaphthalene	mg/kg	0.1	-		-
1-methylnaphthalene		0.1	-	-	-
Acenaphthylene	mg/kg mg/kg	0.1	-	-	-
Acenaphthene	mg/kg	0.1	-		-
Fluorene	mg/kg	0.1	-		-
Phenanthrene	mg/kg	0.1	-		-
Anthracene	mg/kg	0.1	-	-	-
Fluoranthene	mg/kg	0.1	-		-
Pyrene	mg/kg	0.1	-		_
Benzo(a)anthracene	mg/kg	0.1	-		-
Chrysene	mg/kg	0.1	-	-	-
Benzo(b&j)fluoranthene	mg/kg	0.1	-	_	-
Benzo(k)fluoranthene	mg/kg	0.1	-	-	-
Benzo(a)pyrene	mg/kg	0.1	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1		_	_
Dibenzo(ah)anthracene	mg/kg	0.1	-	_	-
Benzo(ghi)perylene	mg/kg	0.1	-	_	-
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>-</td><td></td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	-		-
	(0.2			

Total PAH (18) Total PAH (NEPM/WHO 16)

Carcinogenic PAHs, BaP TEQ <LOR=LOR

Carcinogenic PAHs, BaP TEQ <LOR=LOR/2

 Surrogates
 65-nitrobenzene (Surrogate)
 N
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

TEQ (mg/kg)

TEQ (mg/kg)

mg/kg

mg/kg

0.3

0.2

0.8

0.8

-

-

-

-

-

-

-

-

-

-

OC Pesticides in Soil Method: AN420 Tested: 26/2/2021

Hexachlorobenzene (HCB)	mg/kg	0.1	-	-	-
Alpha BHC	mg/kg	0.1	-	-	-
Lindane	mg/kg	0.1	-	-	-
Heptachlor	mg/kg	0.1	-	-	-
Aldrin	mg/kg	0.1	-	-	-
Beta BHC	mg/kg	0.1	-	-	-
Delta BHC	mg/kg	0.1	-	-	-
Heptachlor epoxide	mg/kg	0.1	-	-	-
o,p'-DDE	mg/kg	0.1	-	-	-
Alpha Endosulfan	mg/kg	0.2	-	-	-
Gamma Chlordane	mg/kg	0.1	-	-	-
Alpha Chlordane	mg/kg	0.1	-	-	-
trans-Nonachlor	mg/kg	0.1	-	-	-
p,p'-DDE	mg/kg	0.1	-	-	-
Dieldrin	mg/kg	0.2	-	-	-

SE216722 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.017 Soil 19 Feb 2021 Trip Blank	SE216722.018 Soil 19 Feb 2021 Trip Spike	SE216722.019 Water 19 Feb 2021 RS1
Parameter	Units	LOR			
OC Pesticides in Soil Method: AN420 Tested: 26/2/202	1 (continued)				
Endrin	mg/kg	0.2	-	-	-
o,p'-DDD	mg/kg	0.1	-	-	-
o,p'-DDT	mg/kg	0.1	-	-	-
Beta Endosulfan	mg/kg	0.2	-	-	-
p,p'-DDD	mg/kg	0.1	-	-	-
p,p'-DDT	mg/kg	0.1	-	-	-
Endosulfan sulphate	mg/kg	0.1	-	-	-
Endrin Aldehyde	mg/kg	0.1	-	-	-
Methoxychlor	mg/kg	0.1	-	-	-
Endrin Ketone	mg/kg	0.1	-	-	-
Isodrin	mg/kg	0.1	-	-	-
Mirex	mg/kg	0.1	-	-	-
Total CLP OC Pesticides	mg/kg	1	-	-	-
Surrogates					
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	-	-
PCBs in Soil Method: AN420 Tested: 26/2/2021					
Arochlor 1016	mg/kg	0.2	-	-	-
Arochlor 1221	mg/kg	0.2	-	-	-
Arochlor 1232	mg/kg	0.2	-	-	-
Arochlor 1242	mg/kg	0.2	-	-	-
Arochlor 1248	mg/kg	0.2	-	-	-
Arochlor 1254	mg/kg	0.2	-	-	-
Arochlor 1260	mg/kg	0.2	-	-	-
Arochlor 1262	mg/kg	0.2	-	-	-
Arochlor 1268	mg/kg	0.2	-	-	-
Total PCBs (Arochlors)	mg/kg	1	-	-	-
Surrogates					

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: AN040/AN320 Tested: 26/2/2021

Arsenic, As	mg/kg	1	-	-	-
Cadmium, Cd	mg/kg	0.3	-	-	-
Chromium, Cr	mg/kg	0.5	-	-	-
Copper, Cu	mg/kg	0.5	-	-	-
Nickel, Ni	mg/kg	0.5	-	-	-
Lead, Pb	mg/kg	1	-	-	-
Zinc, Zn	mg/kg	2	-	-	-

SE216722 R0

<0.0001

-

		Sample Number Sample Matrix Sample Date Sample Name	SE216722.017 Soil 19 Feb 2021 Trip Blank	SE216722.018 Soil 19 Feb 2021 Trip Spike	SE216722.019 Water 19 Feb 2021 RS1						
Parameter	Units	LOR									
Mercury in Soil Method: AN312 Tested: 26/2/2021											
Mercury	mg/kg	0.05	-	-	-						
Moisture Content Method: AN002 Tested: 22/2/2021											
% Moisture	%w/w	1	<1.0	-	-						
Fibre Identification in soil Method: AN602 Tested: 2 FibreID Asbestos Detected SemiQuant	No unit	-	-	-	-						
Estimated Fibres*	%w/w	0.01	-	-	-						
Trace Metals (Total) in Water by ICPMS Method: AN02	2/AN318 Teste	ed: 23/2/2021									
Total Arsenic	µg/L	1	-	-	<1						
Total Cadmium	µg/L	0.1	-	-	<0.1						
Total Chromium	µg/L	1	-	-	<1						
Total Copper	µg/L	1	-	-	<1						
Total Lead	µg/L	1	-	-	<1						
Total Nickel	µg/L	1	-	-	<1						
	µg/L	5			<5						

mg/L

0.0001

-

Mercury (total) in Water Method: AN311(Perth) /AN312 Tested: 23/2/2021

Total Mercury

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Mercury (total) in Water Method: ME-(AU)-[ENV]AN311(Perth) /AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Mercury	LB219140	mg/L	0.0001	<0.0001	0%	NA

Mercury in Soil Method: ME-(AU)-[ENV]AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB219266	mg/kg	0.05	<0.05	0 - 9%	94%	77%

Moisture Content Method: ME-(AU)-[ENV]AN002

Parameter	QC	Units	LOR	DUP %RPD	
	Reference				
% Moisture	LB219103	%w/w	1	0%	

OC Pesticides in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Hexachlorobenzene (HCB)	LB219086	mg/kg	0.1	<0.1	0%	NA
Alpha BHC	LB219086	mg/kg	0.1	<0.1	0%	NA
Lindane	LB219086	mg/kg	0.1	<0.1	0%	NA
Heptachlor	LB219086	mg/kg	0.1	<0.1	0%	105%
Aldrin	LB219086	mg/kg	0.1	<0.1	0%	103%
Beta BHC	LB219086	mg/kg	0.1	<0.1	0%	NA
Delta BHC	LB219086	mg/kg	0.1	<0.1	0%	99%
Heptachlor epoxide	LB219086	mg/kg	0.1	<0.1	0%	NA
o,p'-DDE	LB219086	mg/kg	0.1	<0.1	0%	NA
Alpha Endosulfan	LB219086	mg/kg	0.2	<0.2	0%	NA
Gamma Chlordane	LB219086	mg/kg	0.1	<0.1	0%	NA
Alpha Chlordane	LB219086	mg/kg	0.1	<0.1	0%	NA
trans-Nonachlor	LB219086	mg/kg	0.1	<0.1	0%	NA
p,p'-DDE	LB219086	mg/kg	0.1	<0.1	0%	NA
Dieldrin	LB219086	mg/kg	0.2	<0.2	0%	102%
Endrin	LB219086	mg/kg	0.2	<0.2	0%	103%
o,p'-DDD	LB219086	mg/kg	0.1	<0.1	0%	NA
o,p'-DDT	LB219086	mg/kg	0.1	<0.1	0%	NA
Beta Endosulfan	LB219086	mg/kg	0.2	<0.2	0%	NA
p,p'-DDD	LB219086	mg/kg	0.1	<0.1	0%	NA
p,p'-DDT	LB219086	mg/kg	0.1	<0.1	0%	99%
Endosulfan sulphate	LB219086	mg/kg	0.1	<0.1	0%	NA
Endrin Aldehyde	LB219086	mg/kg	0.1	<0.1	0%	NA
Methoxychlor	LB219086	mg/kg	0.1	<0.1	0%	NA
Endrin Ketone	LB219086	mg/kg	0.1	<0.1	0%	NA
Isodrin	LB219086	mg/kg	0.1	<0.1	0%	NA
Mirex	LB219086	mg/kg	0.1	<0.1	0%	NA
Total CLP OC Pesticides	LB219086	mg/kg	1	<1	0%	NA

Surrogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recov
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB219086	%	-	96%	5%	98%

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Naphthalene	LB219086	mg/kg	0.1	<0.1	0%	106%	107%
2-methylnaphthalene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
1-methylnaphthalene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Acenaphthylene	LB219086	mg/kg	0.1	<0.1	0%	109%	111%
Acenaphthene	LB219086	mg/kg	0.1	<0.1	0%	97%	105%
Fluorene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Phenanthrene	LB219086	mg/kg	0.1	<0.1	0%	115%	116%
Anthracene	LB219086	mg/kg	0.1	<0.1	0%	108%	104%
Fluoranthene	LB219086	mg/kg	0.1	<0.1	0%	114%	135%
Pyrene	LB219086	mg/kg	0.1	<0.1	0%	113%	119%
Benzo(a)anthracene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Chrysene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(b&j)fluoranthene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(k)fluoranthene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(a)pyrene	LB219086	mg/kg	0.1	<0.1	0%	116%	117%
Indeno(1,2,3-cd)pyrene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Dibenzo(ah)anthracene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Benzo(ghi)perylene	LB219086	mg/kg	0.1	<0.1	0%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>LB219086</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0%</td><td>NA</td><td>NA</td></lor=0<>	LB219086	TEQ (mg/kg)	0.2	<0.2	0%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>LB219086</td><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0%</td><td>NA</td><td>NA</td></lor=lor<>	LB219086	TEQ (mg/kg)	0.3	<0.3	0%	NA	NA
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>LB219086</td><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0%</td><td>NA</td><td>NA</td></lor=lor>	LB219086	TEQ (mg/kg)	0.2	<0.2	0%	NA	NA
Total PAH (18)	LB219086	mg/kg	0.8	<0.8	0%	NA	NA
Total PAH (NEPM/WHO 16)	LB219086	mg/kg	0.8	<0.8			

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d5-nitrobenzene (Surrogate)	LB219086	%	-	114%	25%	99%	89%
2-fluorobiphenyl (Surrogate)	LB219086	%	-	80%	15%	92%	86%
d14-p-terphenyl (Surrogate)	LB219086	%	-	99%	3%	80%	84%

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage.* Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

PCBs in Soil Method: ME-(AU)-[ENV]AN420

antor

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Arochlor 1016	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1221	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1232	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1242	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1248	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1254	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1260	LB219086	mg/kg	0.2	<0.2	0%	81%
Arochlor 1262	LB219086	mg/kg	0.2	<0.2	0%	NA
Arochlor 1268	LB219086	mg/kg	0.2	<0.2	0%	NA
Total PCBs (Arochlors)	LB219086	mg/kg	1	<1	0%	NA

Sunogates						
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB219086	%	-	96%	5%	98%

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Arsenic, As	LB219246	mg/kg	1	<1	0 - 8%	110%	92%
Cadmium, Cd	LB219246	mg/kg	0.3	<0.3	0%	97%	88%
Chromium, Cr	LB219246	mg/kg	0.5	<0.5	1 - 8%	116%	92%
Copper, Cu	LB219246	mg/kg	0.5	<0.5	3 - 11%	112%	86%
Nickel, Ni	LB219246	mg/kg	0.5	<0.5	3 - 27%	106%	88%
Lead, Pb	LB219246	mg/kg	1	<1	1 - 6%	109%	89%
Zinc, Zn	LB219246	mg/kg	2	<2.0	6 - 15%	108%	55%

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN022/AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Arsenic	LB219133	µg/L	1	<1	0%	91%
Total Cadmium	LB219133	µg/L	0.1	<0.1	0%	109%
Total Chromium	LB219133	µg/L	1	<1	0%	113%
Total Copper	LB219133	µg/L	1	<1	0%	115%
Total Lead	LB219133	µg/L	1	<1	0%	100%
Total Nickel	LB219133	µg/L	1	<1	0%	110%
Total Zinc	LB219133	µg/L	5	<5	0%	103%

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB219086	mg/kg	20	<20	0%	100%	95%
TRH C15-C28	LB219086	mg/kg	45	<45	0%	88%	108%
TRH C29-C36	LB219086	mg/kg	45	<45	0%	80%	95%
TRH C37-C40	LB219086	mg/kg	100	<100	0%	NA	NA
TRH C10-C36 Total	LB219086	mg/kg	110	<110	0%	NA	NA
TRH >C10-C40 Total (F bands)	LB219086	mg/kg	210	<210	0%	NA	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH >C10-C16	LB219086	mg/kg	25	<25	0%	98%	98%
TRH >C10-C16 - Naphthalene (F2)	LB219086	mg/kg	25	<25	0%	NA	NA
TRH >C16-C34 (F3)	LB219086	mg/kg	90	<90	0%	78%	108%
TRH >C34-C40 (F4)	LB219086	mg/kg	120	<120	0%	90%	NA

VOC's in Soil Method: ME-(AU)-[ENV]AN433

Monocyclic Aromatic Hydrocarbons

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene	LB219076	mg/kg	0.1	<0.1	0%	79%	71%
Toluene	LB219076	mg/kg	0.1	<0.1	0%	80%	71%
Ethylbenzene	LB219076	mg/kg	0.1	<0.1	0%	78%	73%
m/p-xylene	LB219076	mg/kg	0.2	<0.2	0%	78%	73%
o-xylene	LB219076	mg/kg	0.1	<0.1	0%	79%	73%

Polycyclic VOCs

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Naphthalene	LB219076	mg/kg	0.1	<0.1	0%	NA	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d4-1,2-dichloroethane (Surrogate)	LB219076	%	-	88%	4 - 5%	90%	81%
d8-toluene (Surrogate)	LB219076	%	-	98%	4 - 5%	107%	93%
Bromofluorobenzene (Surrogate)	LB219076	%	-	78%	2 - 4%	75%	68%

Totals

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Xylenes	LB219076	mg/kg	0.3	<0.3	0%	NA	NA
Total BTEX	LB219076	mg/kg	0.6	<0.6	0%	NA	NA

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433

Parameter	QC		LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB219076	mg/kg	25	<25	0%	81%	69%
TRH C6-C9	LB219076	mg/kg	20	<20	0%	80%	68%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d4-1,2-dichloroethane (Surrogate)	LB219076	%	-	88%	4 - 5%	90%	81%
d8-toluene (Surrogate)	LB219076	%	-	98%	4 - 5%	107%	93%
Bromofluorobenzene (Surrogate)	LB219076	%	-	78%	2 - 4%	75%	68%

VPH F Bands

Parameter		Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB219076	mg/kg	0.1	<0.1	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB219076	mg/kg	25	<25	0%	81%	68%

METHOD SUMMARY

- METHOD	- METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating
	basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages
	of moisture will take some time in a drying oven for complete removal of water.
AN022	The water sample is digested with Nitric Acid and made up to the original volume similar to APHA3030E.
AN022/AN318	Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS
	technique, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete
	the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete
	the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample
	basis. Based on USEPA method 200.8 and 6010C.
AN311(Perth) /AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions taken from unfiltered sample are reduced by stannous
	chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell
	in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to
	those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid,
	mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury
	vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA
	3112/3500
AN403	Total Passyerable Hydrocarbana - Determination of Hydrocarbana by gas abramatagraphy after a solvent
	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the
	combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four
	alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36
	and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of
	the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of
	analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents .
41402	
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring dissel, kerosene and petrol if care to control volatility is taken
	greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are
	present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA
	3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and
	waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on
	USEPA 3500C and 8270D).

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	 The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if- (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible
	under stereo-microscope viewing conditions.

FOOTNOTES .

IS Insufficient sample for analysis. LOR Limit of Reporting LNR Sample listed, but not received. Raised or Lowered Limit of Reporting î↓ NATA accreditation does not cover the QFH QC result is above the upper tolerance performance of this service QFL QC result is below the lower tolerance ++ Indicative data, theoretical holding time exceeded. The sample was not analysed for this analyte

NVI

Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Solid samples expressed on a dry weight basis.

Indicates that both * and ** apply.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sqs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	DANIEL TAYLOR	Manager	Huong Crawford
Client	RAW EARTH ENVIRONMENTAL	Laboratory	SGS Alexandria Environmental
Address	4/140 HASTINGS PARADE BONDI NSW 2026	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0409 492 988	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	daniel@rawearthenvironmental.com.au	Email	au.environmental.sydney@sgs.com
Project	DSI-BRAD	SGS Reference	SE216722 R0
Order Number	(Not specified)	Date Received	19 Feb 2021
Samples	19	Date Reported	26 Feb 2021

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate	VOC's in Soil	1 item
	Volatile Petroleum Hydrocarbons in Soil	1 item
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	1 item
	VOC's in Soil	1 item

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	18 Soil, 1 Water
Date documentation received	20/2/2021@12:40pr	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	13°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard	. ,	

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Australia t +6 Australia f +6

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
S1	SE216722.001	LB219416	19 Feb 2021	19 Feb 2021	19 Feb 2022	25 Feb 2021	19 Feb 2022	26 Feb 2021		
S2	SE216722.002	LB219416	19 Feb 2021	19 Feb 2021	19 Feb 2022	25 Feb 2021	19 Feb 2022	26 Feb 2021		
S3	SE216722.003	LB219416	19 Feb 2021	19 Feb 2021	19 Feb 2022	25 Feb 2021	19 Feb 2022	26 Feb 2021		
S4	SE216722.004	LB219416	19 Feb 2021	19 Feb 2021	19 Feb 2022	25 Feb 2021	19 Feb 2022	26 Feb 2021		
S5	SE216722.005	LB219416	19 Feb 2021	19 Feb 2021	19 Feb 2022	25 Feb 2021	19 Feb 2022	26 Feb 2021		
Mercury (total) in Water							Method: ME-(AU)-[ENV]	AN311(Perth) /AN312		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
RS1	SE216722.019	LB219140	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	23 Feb 2021		

Mercury in Soil							Method: I	ME-(AU)-[ENV]AN:
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S2	SE216722.002	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S3	SE216722.003	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S4	SE216722.004	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S5	SE216722.005	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S6	SE216722.006	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S7	SE216722.007	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S8	SE216722.008	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S9	SE216722.009	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S10	SE216722.010	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S11	SE216722.011	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S12	SE216722.012	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S13	SE216722.013	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S14	SE216722.014	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
S15	SE216722.015	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
QS1	SE216722.016	LB219266	19 Feb 2021	19 Feb 2021	19 Mar 2021	23 Feb 2021	19 Mar 2021	26 Feb 2021
Aoisture Content							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S2	SE216722.002	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S3	SE216722.003	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S4	SE216722.004	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S5	SE216722.005	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S6	SE216722.006	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S7	SE216722.007	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S8	SE216722.008	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S9	SE216722.009	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S10	SE216722.010	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S11	SE216722.011	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S12	SE216722.012	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S13	SE216722.013	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S14	SE216722.014	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
S15	SE216722.015	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
QS1	SE216722.016	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
Trip Blank	SE216722.017	LB219103	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	27 Feb 2021	26 Feb 2021
OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S2	SE216722.002	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S3	SE216722.003	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S4	SE216722.004	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S5	SE216722.005	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S6	SE216722.006	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S7	SE216722.007	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S8	SE216722.008	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S9	SE216722.009	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S10	SE216722.010	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (con	tinued)						Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S11	SE216722.011	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12	SE216722.012	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S13	SE216722.013	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S14	SE216722.014	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S15	SE216722.015	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
PAH (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S2	SE216722.002	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S3	SE216722.003	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S4	SE216722.004	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S5	SE216722.005	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S6	SE216722.005	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S7	SE216722.000	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S8								
	SE216722.008	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S9	SE216722.009	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S10	SE216722.010	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S11	SE216722.011	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12	SE216722.012	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S13	SE216722.013	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S14	SE216722.014	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S15	SE216722.015	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
CBs in Soil							Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S2	SE216722.002	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S3	SE216722.003	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S4	SE216722.004	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S5	SE216722.005	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S6	SE216722.006	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S7	SE216722.007	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S8	SE216722.008	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S9	SE216722.009	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S10	SE216722.010	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S11	SE216722.011	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12	SE216722.012	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12 S13	SE216722.012	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
	SE216722.013				05 Mar 2021			
S14		LB219086	19 Feb 2021	19 Feb 2021		22 Feb 2021	03 Apr 2021	26 Feb 2021
S15	SE216722.015	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
	nts in Soil/Waste Solids/Ma	-						J)-[ENV]AN040/AN32
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S2	SE216722.002	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S3	SE216722.003	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S4	SE216722.004	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S5	SE216722.005	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S6	SE216722.006	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
\$7	SE216722.007	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S8	SE216722.008	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S9	SE216722.009	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S10	SE216722.010	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S11	SE216722.011	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S12	SE216722.012	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S13	SE216722.013	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S14	SE216722.014	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
S15	SE216722.015	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
QS1	SE216722.016	LB219246	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	26 Feb 2021
					3		3	

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Trace Metals (Total) in Wat	ter by ICPMS						Method: ME-(AU)-[ENV]AN022/AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
RS1	SE216722.019	LB219133	19 Feb 2021	19 Feb 2021	18 Aug 2021	23 Feb 2021	18 Aug 2021	23 Feb 2021
TRH (Total Recoverable H	ydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S2	SE216722.002	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S3	SE216722.003	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S4	SE216722.004	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S5	SE216722.005	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S6	SE216722.006	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S7	SE216722.007	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S8	SE216722.008	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S9	SE216722.009	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S10	SE216722.010	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S11	SE216722.011	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12	SE216722.012	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S13	SE216722.013	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S14	SE216722.014	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S15	SE216722.015	LB219086	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
/OC's in Soil							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S2	SE216722.002	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S3	SE216722.003	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S4	SE216722.004	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S5	SE216722.005	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S6	SE216722.006	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S7	SE216722.007	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S8	SE216722.008	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S9	SE216722.009	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S10	SE216722.010	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S11	SE216722.011	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12	SE216722.012	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S13	SE216722.013	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S14	SE216722.014	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S15	SE216722.015	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
Trip Blank	SE216722.017	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
Trip Spike	SE216722.018	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
Volatile Petroleum Hydroca	arbons in Soil						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE216722.001	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S2	SE216722.002	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S3	SE216722.003	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S4	SE216722.004	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S5	SE216722.005	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S6	SE216722.006	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S7	SE216722.007	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S8	SE216722.008	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S9	SE216722.009	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S10	SE216722.010	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S11	SE216722.011	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S12	SE216722.012	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S13	SE216722.013	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S14	SE216722.014	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
S15	SE216722.015	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021
Trip Blank	SE216722.017	LB219076	19 Feb 2021	19 Feb 2021	05 Mar 2021	22 Feb 2021	03 Apr 2021	26 Feb 2021

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OC Pesticides in Soil				Method: M	e-(au)-[env]an
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	S1	SE216722.001	%	60 - 130%	112
	S2	SE216722.002	%	60 - 130%	106
	S3	SE216722.003	%	60 - 130%	106
	S4	SE216722.004	%	60 - 130%	105
	S5	SE216722.005	%	60 - 130%	106
AH (Polynuclear Aromatic Hydrocarbons) in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
2-fluorobiphenyl (Surrogate)	S1	SE216722.001	%	70 - 130%	92
	S2	SE216722.002	%	70 - 130%	78
	S3	SE216722.003	%	70 - 130%	80
	S4	SE216722.004	%	70 - 130%	102
	S5	SE216722.005	%	70 - 130%	92
	S6	SE216722.006	%	70 - 130%	92
	S7	SE216722.007	%	70 - 130%	78
	S8	SE216722.008	%	70 - 130%	94
	S9	SE216722.009	%	70 - 130%	94
	S10	SE216722.010	%	70 - 130%	78
	S11	SE216722.011	%	70 - 130%	85
	S12	SE216722.012	%	70 - 130%	85
	S13	SE216722.013	%	70 - 130%	83
	S14	SE216722.014	%	70 - 130%	96
	S15	SE216722.015	%	70 - 130%	82
14-p-terphenyl (Surrogate)	S1	SE216722.001	%	70 - 130%	88
	S2	SE216722.002	%	70 - 130%	97
	<u>S3</u>	SE216722.002	%	70 - 130%	92
	 S4	SE216722.003	%	70 - 130%	95
	 S5	SE216722.005	%	70 - 130%	83
	 S6	SE216722.005	%	70 - 130%	89
	 \$7	SE216722.000	%	70 - 130%	89
	 S8	SE216722.008	%	70 - 130%	82
	<u> </u>	SE216722.009	%	70 - 130%	94
			%		94
	<u>S10</u>	SE216722.010	%	70 - 130%	90
	<u>S11</u>	SE216722.011		70 - 130%	
	<u>S12</u>	SE216722.012	%	70 - 130%	101
	<u>S13</u>	SE216722.013	%	70 - 130%	94
	S14	SE216722.014	%	70 - 130%	91
	<u>S15</u>	SE216722.015	%	70 - 130%	84
5-nitrobenzene (Surrogate)	S1	SE216722.001	%	70 - 130%	88
	<u>S2</u>	SE216722.002	%	70 - 130%	115
	<u>S3</u>	SE216722.003	%	70 - 130%	125
	<u>S4</u>	SE216722.004	%	70 - 130%	111
	<u>S5</u>	SE216722.005	%	70 - 130%	105
	<u>S6</u>	SE216722.006	%	70 - 130%	92
	<u>\$7</u>	SE216722.007	%	70 - 130%	105
	S8	SE216722.008	%	70 - 130%	105
	<u>S9</u>	SE216722.009	%	70 - 130%	123
	<u>S10</u>	SE216722.010	%	70 - 130%	105
	<u>S11</u>	SE216722.011	%	70 - 130%	95
	<u>S12</u>	SE216722.012	%	70 - 130%	94
	<u>S13</u>	SE216722.013	%	70 - 130%	94
	S14	SE216722.014	%	70 - 130%	93
	S15	SE216722.015	%	70 - 130%	97
CBs in Soil				Method: M	E-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	S1	SE216722.001	%	60 - 130%	112
	S2	SE216722.002	%	60 - 130%	106
	S3	SE216722.003	%	60 - 130%	106
	S4	SE216722.004	%	60 - 130%	105
	S5	SE216722.005	%	60 - 130%	106

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Bromofluorobenzene (Surrogate)	S1	SE216722.001	%	60 - 130%	70
	S2	SE216722.002	%	60 - 130%	72
	\$3	SE216722.003	%	60 - 130%	61
	S4	SE216722.004	%	60 - 130%	60 ①
	S5	SE216722.005	%	60 - 130%	77
	S6	SE216722.006	%	60 - 130%	98
		SE216722.000	%	60 - 130%	100
			÷		
	<u>S8</u>	SE216722.008	%	60 - 130%	88
	<u>S9</u>	SE216722.009	%	60 - 130%	86
	S10	SE216722.010	%	60 - 130%	83
	S11	SE216722.011	%	60 - 130%	78
	<u>S12</u>	SE216722.012	%	60 - 130%	80
	S13	SE216722.013	%	60 - 130%	84
	S14	SE216722.014	%	60 - 130%	78
	S15	SE216722.015	%	60 - 130%	94
	Trip Blank	SE216722.017	%	60 - 130%	94
	Trip Spike	SE216722.018	%	60 - 130%	86
14-1,2-dichloroethane (Surrogate)	S1	SE216722.001	%	60 - 130%	86
, (S2	SE216722.002	%	60 - 130%	88
	 S3	SE216722.002	%	60 - 130%	78
	<u>S4</u>	SE216722.004	%	60 - 130%	77
	<u>S5</u>	SE216722.005	%	60 - 130%	80
	<u>S6</u>	SE216722.006	%	60 - 130%	100
	<u>\$7</u>	SE216722.007	%	60 - 130%	103
	<u>S8</u>	SE216722.008	%	60 - 130%	90
	S9	SE216722.009	%	60 - 130%	89
	S10	SE216722.010	%	60 - 130%	85
	S11	SE216722.011	%	60 - 130%	80
	S12	SE216722.012	%	60 - 130%	82
	S13	SE216722.013	%	60 - 130%	88
	S14	SE216722.014	%	60 - 130%	80
	S15	SE216722.015	%	60 - 130%	98
		SE216722.013		60 - 130%	
	Trip Blank		%		98
	Trip Spike	SE216722.018	%	60 - 130%	91
18-toluene (Surrogate)	<u>S1</u>	SE216722.001	%	60 - 130%	97
	<u>S2</u>	SE216722.002	%	60 - 130%	101
	<u>S3</u>	SE216722.003	%	60 - 130%	85
	<u>S4</u>	SE216722.004	%	60 - 130%	83
	S5	SE216722.005	%	60 - 130%	77
	S6	SE216722.006	%	60 - 130%	97
	S7	SE216722.007	%	60 - 130%	100
	S8	SE216722.008	%	60 - 130%	86
	<u> </u>	SE216722.009	%	60 - 130%	83
		SE216722.009	%	60 - 130%	79
	S10	SE216722.010	%	60 - 130%	79
	<u>S12</u>	SE216722.012	%	60 - 130%	75
	S13	SE216722.013	%	60 - 130%	83
	S14	SE216722.014	%	60 - 130%	73
	S15	SE216722.015	%	60 - 130%	92
	Trip Blank	SE216722.017	%	60 - 130%	90
	Trip Spike	SE216722.018	%	60 - 130%	85
latile Petroleum Hydrocarbons in Soil				Method: MF	-(AU)-[ENV]A
	Somple Neme	Sample Number	Unite		
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	<u>S1</u>	SE216722.001	%	60 - 130%	70
	S2	SE216722.002	%	60 - 130%	72
	<u>S3</u>	SE216722.003	%	60 - 130%	61
	S4	SE216722.004	%	60 - 130%	60 ①
	S5	SE216722.005	%	60 - 130%	77
	S6	SE216722.006	%	60 - 130%	98

S7

SE216722.007

100

60 - 130%

%

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

olatile Petroleum Hydrocarbons in Soil (continued)				Method: M	E-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	S8	SE216722.008	%	60 - 130%	88
	S9	SE216722.009	%	60 - 130%	86
	S10	SE216722.010	%	60 - 130%	83
	S11	SE216722.011	%	60 - 130%	78
	S12	SE216722.012	%	60 - 130%	80
	S13	SE216722.013	%	60 - 130%	84
	S14	SE216722.014	%	60 - 130%	78
	S15	SE216722.015	%	60 - 130%	94
	Trip Blank	SE216722.017	%	60 - 130%	94
d4-1,2-dichloroethane (Surrogate)	S1	SE216722.001	%	60 - 130%	86
	S2	SE216722.002	%	60 - 130%	88
	S3	SE216722.003	%	60 - 130%	78
	S4	SE216722.004	%	60 - 130%	77
	S5	SE216722.005	%	60 - 130%	80
	S6	SE216722.006	%	60 - 130%	100
	S7	SE216722.007	%	60 - 130%	103
	S8	SE216722.008	%	60 - 130%	90
	S9	SE216722.009	%	60 - 130%	89
	S10	SE216722.010	%	60 - 130%	85
	S11	SE216722.011	%	60 - 130%	80
	S12	SE216722.012	%	60 - 130%	82
	S13	SE216722.013	%	60 - 130%	88
	S14	SE216722.014	%	60 - 130%	80
	S15	SE216722.015	%	60 - 130%	98
	Trip Blank	SE216722.017	%	60 - 130%	98
d8-toluene (Surrogate)	S1	SE216722.001	%	60 - 130%	97
	S2	SE216722.002	%	60 - 130%	101
	S3	SE216722.003	%	60 - 130%	85
	S4	SE216722.004	%	60 - 130%	83
	S5	SE216722.005	%	60 - 130%	77
	S6	SE216722.006	%	60 - 130%	97
	S7	SE216722.007	%	60 - 130%	100
	S8	SE216722.008	%	60 - 130%	86
	S9	SE216722.009	%	60 - 130%	83
	S10	SE216722.010	%	60 - 130%	79
	S11	SE216722.011	%	60 - 130%	73
	S12	SE216722.012	%	60 - 130%	75
	S13	SE216722.013	%	60 - 130%	83
	S14	SE216722.014	%	60 - 130%	73
	S15	SE216722.015	%	60 - 130%	92
	Trip Blank	SE216722.017	%	60 - 130%	90

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Menuny in Coll			Math	
Mercury in Soil Sample Number	Parameter	Units	LOR	od: ME-(AU)-[ENV]AN312 Result
LB219266.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

ample Number	Parameter	Units	LOR	Result
3219086.001			0.1	
219086.001	Alpha BHC	mg/kg	0.1	<0.1
		mg/kg		
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrog	tes Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	96
H (Polynuclear Aromatic Hydroc	irbons) in Soil		Meth	od: ME-(AU)-[ENV]
mple Number	Parameter	Units	LOR	Result
19086.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1
		mg/kg	0.1	<0.1
		mg/kg	0.1	
	Indeno(1,2,3-cd)pyrene	malka	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene Benzo(ghi)perylene	mg/kg	0.1	<0.1
Surrog	Dibenzo(ah)anthracene Benzo(ghi)perylene Total PAH (18)			

99 Method: ME-(AU)-[ENV]AN420

80

%

%

			moun	
Sample Number	Parameter	Units	LOR	Result
LB219086.001	Arochlor 1016	mg/kg	0.2	<0.2
	Arochlor 1221	mg/kg	0.2	<0.2
	Arochlor 1232	mg/kg	0.2	<0.2
	Arochlor 1242	mg/kg	0.2	<0.2
	Arochlor 1248	mg/kg	0.2	<0.2
	Arochlor 1254	mg/kg	0.2	<0.2

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

PCBs in Soil

METHOD BLANKS

SE216722 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

	ed)				
Sample Number		Parameter	Units	LOR	Result
LB219086.001		Arochlor 1260	mg/kg	0.2	<0.2
		Arochlor 1262	mg/kg	0.2	<0.2
		Arochlor 1268	mg/kg	0.2	<0.2
		Total PCBs (Arochlors)	mg/kg	1	<1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	96
Total Recoverable Ele	ements in Soil/Waste Solids/Mat	erials by ICPOES		Method: ME-	(AU)-[ENV]AN040/A
Sample Number		Parameter	Units	LOR	Result
LB219246.001		Arsenic, As	mg/kg	1	<1
		Cadmium, Cd	mg/kg	0.3	<0.3
		Chromium, Cr	mg/kg	0.5	<0.5
		Copper, Cu	mg/kg	0.5	<0.5
		Nickel, Ni	mg/kg	0.5	<0.5
		Lead, Pb	mg/kg	1	<1
		Zinc, Zn	mg/kg	2	<2.0
Frace Metals (Total) in	n Water by ICPMS				(AU)-[ENV]AN022/A
Sample Number		Parameter	Units	LOR	Result
LB219133.001		Total Arsenic		1	<1
LB219133.001		Total Cadmium	μg/L μg/L	0.1	<0.1
		Total Copper		1	<1
		Total Lead	μg/L μg/L	1	<1
		Total Nickel	μg/L	1	<1
		Total Zinc	μg/L	5	<5
TPH (Total Recoveral	ble Hydrocarbons) in Soil		P3/-		d: ME-(AU)-[ENV]A
	bie Hydrocarbons) in Soli				
Sample Number		Parameter	Units	LOR	Result
LB219086.001		TRH C10-C14	mg/kg	20	<20
		TRH C15-C28	mg/kg	45	<45
		TRH C29-C36	mg/kg	45	<45
		TRH C37-C40	mg/kg	100	<100
		TRH C10-C36 Total	mg/kg	110	<110
VOC's in Soil				Metho	od: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
LB219076.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	88
		d8-toluene (Surrogate)	%	-	98
		Bromofluorobenzene (Surrogate)	%	-	78
	Totals	Total BTEX	mg/kg	0.6	<0.6
	drocarbons in Soil			Metho	d: ME-(AU)-[ENV]A
Volatile Petroleum Hy					
		Parameter	Units	LOR	Result
/olatile Petroleum Hy Sample Number LB219076.001		Parameter TRH C6-C9	Units mg/kg	LOR 20	Result <20

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Mercury (total) in Water Method: ME-(AU)-[ENV]AN311(F					ENVJAN311(P	erth) /AN312		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.019	LB219140.006	Total Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

Mercury in Soil

Mercury in Soil Method: ME-(AU)-						ENVJAN312		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.010	LB219266.014	Mercury	mg/kg	0.05	<0.05	<0.05	181	0
SE216722.016	LB219266.021	Mercury	mg/kg	0.05	0.12	0.11	72	9

Moisture Content

Moisture Content Method: ME-(AU)					ENVJAN002			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.007	LB219103.011	% Moisture	%w/w	1	18.4	18.3	35	0
SE216722.017	LB219103.022	% Moisture	%w/w	1	<1	<1	200	0

C Peeticidee in Soll

DC Pesticides in S	Soll						Meth	nod: ME-(AU)-	[ENV]AN4:
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E216722.005	LB219086.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	197	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	197	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	138	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	138	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	165	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.17	30	5
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	nod: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.006	LB219086.024		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0

Unginai	Duplicate	Faianelei	Units	LOK	Unginai	Duplicate	Gillena /	KFU %
SE216722.006	LB219086.024	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
		Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
		Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
		Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
		Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	_								(ENVJAN4
	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.006	LB219086.024		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.6	30	25
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	15
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	3
PCBs in Soil				5.5		-			
								od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.005	LB219086.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	_	0	0	30	5
Total Recoverable	Elements in Soil/Wa	ste Solids/Materia	Is by ICPOES				Method: ME	-(AU)-[ENV]A	N040/AN3
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.010	LB219246.014		Arsenic, As	mg/kg	1	6	6	47	0
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.5	12	11	34	8
			Copper, Cu	mg/kg	0.5	19	18	33	3
			Nickel, Ni	mg/kg	0.5	9.4	9.1	35	3
			Lead, Pb	mg/kg	1	24	24	34	1
			Zinc, Zn	mg/kg	2	29	28	37	6
SE216722.016	LB219246.021		Arsenic, As	mg/kg	1	4	4	55	8
SE216722.016	LB219246.021		Arsenic, As Cadmium, Cd	mg/kg ma/ka				55 200	
SE216722.016	LB219246.021		Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
SE216722.016	LB219246.021		Cadmium, Cd Chromium, Cr	mg/kg mg/kg	0.3 0.5	<0.3 7.9	<0.3 7.9	200 36	0 1
SE216722.016	LB219246.021		Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	0.3 0.5 0.5	<0.3 7.9 24	<0.3 7.9 21	200 36 32	0 1 11
SE216722.016	LB219246.021		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5	<0.3 7.9 24 18	<0.3 7.9 21 14	200 36 32 33	0 1 11 27
SE216722.016	LB219246.021		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5 1	<0.3 7.9 24 18 35	<0.3 7.9 21 14 37	200 36 32 33 33	0 1 11 27 6
SE216722.016	LB219246.021		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5	<0.3 7.9 24 18	<0.3 7.9 21 14	200 36 32 33	0 1 11 27
	LB219246.021	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5 1	<0.3 7.9 24 18 35	<0.3 7.9 21 14 37 45	200 36 32 33 33	0 1 11 27 6 15
Frace Metals (Tota	al) in Water by ICPMS	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5 1	<0.3 7.9 24 18 35 52	<0.3 7.9 21 14 37 45 Method: ME	200 36 32 33 33 34 -(AU)-[ENV]A	0 1 11 27 6 15 N022/AN
F <mark>race Metals (Tota</mark> Original	al) in Water by ICPMS Duplicate	5	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	0.3 0.5 0.5 1 2 LOR	<0.3 7.9 24 18 35 52 Original	<0.3 7.9 21 14 37 45 Method: ME Duplicate	200 36 32 33 33 34 -(AU)-[ENV]A Criteria %	0 1 11 27 6 15 N022/AN RPD %
F <mark>race Metals (Tota</mark> Original	al) in Water by ICPMS	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic	mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L	0.3 0.5 0.5 1 2 LOR 1	<0.3 7.9 24 18 35 52 Original <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200	0 1 11 27 6 15 N022/AN RPD % 0
F <mark>race Metals (Tota</mark> Original	al) in Water by ICPMS Duplicate	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units µg/L µg/L	0.3 0.5 0.5 1 2 LOR 1 0.1	<0.3 7.9 24 18 35 52 Original <1 <0.1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200	0 1 11 27 6 15 N022/AN: RPD % 0 0
Frace Metals (Tota	al) in Water by ICPMS Duplicate	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200	0 1 11 27 6 15 N022/AN RPD % 0 0 0
F <mark>race Metals (Tot</mark> a Original	al) in Water by ICPMS Duplicate	5	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200	0 1 11 27 6 15 N022/AN: RPD % 0 0 0 0
F <mark>race Metals (Tota</mark> Original	al) in Water by ICPMS Duplicate	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1 <1 <1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200	0 1 11 27 6 15 N022/AN RPD % 0 0 0 0 0
F <mark>race Metals (Tota</mark> Original	al) in Water by ICPMS Duplicate	3	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Chromium Total Copper Total Lead Total Nickel	mg/kg ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200	0 1 11 27 6 15 N022/AN RPD 9 0 0 0 0 0 0 0 0 0 0 0
F <mark>race Metals (Tota</mark> Original SE216722.019	al) in Water by ICPMS Duplicate LB219133.014		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Copper Total Lead	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units μg/L μg/L μg/L μg/L μg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1 <1 <1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <5	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200	0 1 11 27 6 15 N022/AN RPD 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F <mark>race Metals (Tota</mark> Original SE216722.019	al) in Water by ICPMS Duplicate		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Chromium Total Copper Total Lead Total Nickel	mg/kg ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <5	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200	0 1 11 27 6 15 N022/AN: RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0
Frace Metals (Tota Original SE216722.019 TRH (Total Recover	al) in Water by ICPMS Duplicate LB219133.014		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Arsenic Total Cadmium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Zinc	mg/kg ug/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1	<0.3 7.9 24 18 35 52 Original <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <1	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1 <5 Meth	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 200 200	0 1 11 27 6 15 N022/AN RPD 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trace Metals (Tota Original SE216722.019 TRH (Total Recove Original	al) in Water by ICPMS Duplicate LB219133.014 erable Hydrocarbons Duplicate		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Arsenic Total Cadmium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Xickel Total Zinc	mg/kg ug/L μg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5	<0.3 7.9 24 18 35 52 Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Original	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <5 Metho Duplicate	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	0 1 11 27 6 15 N022/AN RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trace Metals (Tota Original SE216722.019 TRH (Total Recove Original	al) in Water by ICPMS Duplicate LB219133.014		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Arsenic Total Cadmium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Nickel Total Zinc Parameter TRH C10-C14	mg/kg ug/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20	<0.3 7.9 24 18 35 52 Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Original <20	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <1 <1 <1 <1 <1 <1 <5 Method: ME 20	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	0 1 11 27 6 15 N022/AN RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trace Metals (Tota Original SE216722.019 TRH (Total Recove Original	al) in Water by ICPMS Duplicate LB219133.014 erable Hydrocarbons Duplicate		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28	mg/kg	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45	<0.3 7.9 24 18 35 52 Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Original <20 <45	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1 <5 Meth Duplicate <20 <45	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	0 1 11 27 6 15 N022/AN: RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Frace Metals (Tota Original SE216722.019 TRH (Total Recover	al) in Water by ICPMS Duplicate LB219133.014 erable Hydrocarbons Duplicate		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45	<0.3 7.9 24 18 35 52 Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Original <20 <45 <45	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <5 Meth Duplicate <20 <45 <45	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	0 1 11 27 6 15 N022/AN3 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trace Metals (Tota Original SE216722.019 TRH (Total Recove Original	al) in Water by ICPMS Duplicate LB219133.014 erable Hydrocarbons Duplicate		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg up/kg µg/L µg/L<	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45 45 100	<0.3 7.9 24 18 35 52 Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Original <20 <45 <45 <100	<0.3 7.9 21 14 37 45 Method: ME 20 45 41 41 41 41 41 41 41 41 41 41 41 41 41	200 36 32 33 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	0 1 11 27 6 15 N022/AN3 RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Trace Metals (Tota Original SE216722.019 TRH (Total Recove Original	al) in Water by ICPMS Duplicate LB219133.014 erable Hydrocarbons Duplicate		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter Total Arsenic Total Cadmium Total Chromium Total Chromium Total Chromium Total Copper Total Lead Total Nickel Total Zinc Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg	0.3 0.5 0.5 1 2 LOR 1 0.1 1 1 1 1 5 5 LOR 20 45	<0.3 7.9 24 18 35 52 Original <1 <1 <1 <1 <1 <1 <1 <1 <1 <5 Original <20 <45 <45	<0.3 7.9 21 14 37 45 Method: ME Duplicate <1 <0.1 <1 <1 <1 <1 <1 <1 <1 <5 Meth Duplicate <20 <45 <45	200 36 32 33 34 -(AU)-[ENV]A Criteria % 200 200 200 200 200 200 200 20	0 1 11 27 6 15 N022/AN: RPD % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may give a different calculated RPD.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE216722.006	LB219086.024	TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
SE210722.000	LD2 19000.024	TRITT Danus	TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE216722.015	LB219086.023		TRH C10-C14		20	<20	<20	200	0
3E210722.015	LB2 19080.023		TRH C15-C28	mg/kg mg/kg	45	<45	<45	200	0
								200	0
			TRH C29-C36	mg/kg	45	<45	<45		
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
OC's in Soil							Meth	od: ME-(AU)-	(ENVJA)
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE216722.007	LB219076.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		, a official	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Bolyovalia	Naphthalene						0
		Polycyclic	· · ·	mg/kg	0.1	<0.1	<0.1	200	
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.3	9.9	50	4
			d8-toluene (Surrogate)	mg/kg	-	10.0	9.5	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.0	9.8	50	2
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE216722.015	LB219076.026	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.8	9.4	50	5
			d8-toluene (Surrogate)	mg/kg	-	9.2	8.8	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	9.0	50	4
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
alatila Datralaum	Hydrocarbons in Soi						Math	od: ME-(AU)-	
		1							
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE216722.007	LB219076.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	10.3	9.9	30	4
			d8-toluene (Surrogate)	mg/kg	-	10.0	9.5	30	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	10.0	9.8	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE216722.015	LB219076.026		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.8	9.4	30	5
		0	d8-toluene (Surrogate)	mg/kg	-	9.2	8.8	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	9.4	9.0	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
		VIIII Dalius		iliy/ky	0.1	-0.1	-0.1	200	

TRH C6-C10 minus BTEX (F1)

mg/kg

25

<25

<25

200

0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB219266.002	Mercury	mg/kg	0.05	0.19	0.2	70 - 130	94

OC Pesticides in Soil

						····· • •	
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB219086.002	Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	105
	Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	103
	Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	99
	Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	102
	Endrin	mg/kg	0.2	0.2	0.2	60 - 140	103
	p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	99
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	98
PAH (Polynuclear Aromatic Hydroc	arbons) in Soll				I	Method: ME-(Al	U)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB219086.002	Naphthalene	mg/kg	0.1	4.2	4	60 - 140	106
	Acenaphthylene	mg/kg	0.1	4.4	4	60 - 140	109
	Acenaphthene	mg/kg	0.1	3.9	4	60 - 140	97
	Phenanthrene	mg/kg	0.1	4.6	4	60 - 140	115
	Anthracene	mg/kg	0.1	4.3	4	60 - 140	108
	Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	114
	Pyrene	mg/kg	0.1	4.5	4	60 - 140	113
	Benzo(a)pyrene	mg/kg	0.1	4.6	4	60 - 140	116
Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	99
	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
	d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	80
PCBs in Soil					N	Method: ME-(Al	U)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB219086.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	81

Total Recoverable Elements in So	I/Waste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN	vjano40/an320
Sample Number	Parameter	Ur	nits LOI	R Result	Expected	Criteria %	Recovery %
LB219246.002	Arsenic, As	mg/l	kg 1	350	318.22	80 - 120	110
	Cadmium, Cd	mg/l	kg 0.3	5.3	5.41	80 - 120	97
	Chromium, Cr	mg/	kg 0.5	44	38.31	80 - 120	116
	Copper, Cu	mg/	kg 0.5	330	290	80 - 120	112
	Nickel, Ni	mg/	kg 0.5	200	187	80 - 120	106
	Lead, Pb	mg/	kg 1	98	89.9	80 - 120	109
	Zinc, Zn	mg/l	kg 2	290	273	80 - 120	108
ace Metals (Total) in Water by ICPMS					Method:	ME-(AU)-[EN	VJAN022/AN318
Sample Number	Parameter	Ur	nits LOI	R Result	Expected	Criteria %	Recovery %
LB219133.002	Total Arsenic	hā/	Ľ 1	18	20	80 - 120	91
	Total Cadmium	μg/	L 0.1	22	20	80 - 120	109
	Total Chromium	μg/	Ľ 1	23	20	80 - 120	113
	Total Copper	μg/	Ľ 1	23	20	80 - 120	115
	Total Lead	μθ/	L 1	20	20	80 - 120	100
	Total Nickel	μg/	L 1	22	20	80 - 120	110
	Total Zinc	hð\	L 5	21	20	80 - 120	103
TRH (Total Recoverable Hydrocar	bons) in Soil					Method: ME-(A	U)-[ENV]AN403
Sample Number	Parameter	Ur	nits LOI	R Result	Expected	Criteria %	Recovery %
LB219086.002	TRH C10-C14	mg/l	kg 20	40	40	60 - 140	100
	TRH C15-C28	mg/l	kg 45	<45	40	60 - 140	88
	TRH C29-C36	mg/l	kg 45	<45	40	60 - 140	80
TRH F Bands	TRH >C10-C16	mg/l	kg 25	39	40	60 - 140	98
	TRH >C16-C34 (F3)	mg/l	kg 90	<90	40	60 - 140	78
	TRH >C34-C40 (F4)	mg/l	kg 120	<120	20	60 - 140	90

VPH F Bands

TRH C6-C10 minus BTEX (F1)

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result Expected Criteria % Recovery % LB219076.002 60 - 140 Monocyclic Benzene mg/kg 0.1 3.9 5 79 Aromatic Toluene mg/kg 0.1 4.0 5 60 - 140 80 0.1 3.9 60 - 140 78 Ethylbenzene mg/kg 5 m/p-xylene mg/kg 0.2 7.8 10 60 - 140 78 o-xylene mg/kg 0.1 4.0 5 60 - 140 79 Surrogates d4-1,2-dichloroethane (Surrogate) 9.0 10 70 - 130 90 mg/kg 70 - 130 107 d8-toluene (Surrogate) 10.7 10 mg/kg Bromofluorobenzene (Surrogate) mg/kg 7.5 10 70 - 130 75 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Units LOR Result Expected Criteria % Recovery % Parameter LB219076.002 TRH C6-C10 mg/kg 25 75 92.5 60 - 140 81 TRH C6-C9 mg/kg 20 64 80 60 - 140 80 Surrogates d4-1,2-dichloroethane (Surrogate) 9.0 10 70 - 130 90 mg/kg 7.5 10 70 - 130 75 Bromofluorobenzene (Surrogate) mg/kg

mg/kg

25

51

62.5

60 - 140

81

MATRIX SPIKES

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE216722.001	LB219266.004	Mercury	mg/kg	0.05	0.32	0.16	0.2	77

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovervo
GC Sample SE216722.005	LB219086.025				0.1	4.3	<0.1	5ріке 4	Recovery%
SE216722.005	LB219086.025		Naphthalene	mg/kg		4.3 <0.1		4	107
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1		<0.1	4	- 111
			Acenaphthylene	mg/kg	0.1	4.5			
			Acenaphthene	mg/kg	0.1	4.2	<0.1	4	105
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.7	<0.1	4	116
			Anthracene	mg/kg	0.1	4.2	<0.1	4	104
			Fluoranthene	mg/kg	0.1	5.4	<0.1	4	135
			Pyrene	mg/kg	0.1	4.8	<0.1	4	119
			Benzo(a)anthracene	mg/kg	0.1	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	0.2	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.7	<0.1	4	117
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.7</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	4.7	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.8</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.8	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.8</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.8	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	37	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	-	89
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	86
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	84
otal Recoverab	le Elements in Soil/Wa	ste Solids/Materi	als by ICPOES				Method: ME	-(AU)-[ENV	JAN040/AN32
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE216722.001	-								
	LB219246.004		Arsenic. As	ma/ka	1	50	4	50	-
JL2 10/22.001	LB219246.004		Arsenic, As	mg/kg ma/ka	0.3	50 44	4 <0.3	50 50	92
JE2 10/22.001	LB219246.004		Cadmium, Cd	mg/kg	0.3	44	<0.3	50	92 88
5L2 107 22.00 I	LB219246.004		Cadmium, Cd Chromium, Cr	mg/kg mg/kg	0.3 0.5	44 53	<0.3 7.2	50 50	92 88 92
5-2 10722.001	LB219246.004		Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg	0.3 0.5 0.5	44 53 68	<0.3 7.2 25	50 50 50	92 88 92 86
562 10722.001	LB219246.004		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5	44 53 68 58	<0.3 7.2 25 14	50 50 50 50	92 88 92 86 88
562 10722.001	LB219246.004		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5 1	44 53 68 58 86	<0.3 7.2 25 14 42	50 50 50 50 50	92 88 92 86 88 88 89
			Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5	44 53 68 58	<0.3 7.2 25 14 42 66	50 50 50 50 50 50 50	92 88 92 86 88 88 89 55 @
RH (Total Reco	vverable Hydrocarbons) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 0.5 1 2	44 53 68 58 86 93	<0.3 7.2 25 14 42 66 Meth	50 50 50 50 50 50 50 0d: ME-(AL	92 88 92 86 88 89 55 @ J)-[ENV]AN40
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units	0.3 0.5 0.5 1 2 LOR	44 53 68 58 86 93 Result	<0.3 7.2 25 14 42 66 Meth Original	50 50 50 50 50 50 50 aod: ME-(AL Spike	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery
RH (Total Reco QC Sample	vverable Hydrocarbons) in Soll	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.3 0.5 0.5 1 2 LOR 20	44 53 68 58 86 93 Result 38	<0.3 7.2 25 14 42 66 Meth Original 0	50 50 50 50 50 50 10d: ME-(AL Spike 40	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg	0.3 0.5 0.5 1 2 LOR 20 45	44 53 68 58 86 93 Result 38 <45	<0.3 7.2 25 14 42 66 Meth Original 0 0	50 50 50 50 50 50 10d: ME-(AL Spike 40 40	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95 108
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45	44 53 68 58 86 93 Result 38 <45 <45	<0.3 7.2 25 14 42 66 Meth Original 0 0	50 50 50 50 50 50 10d: ME-(AL Spike 40	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45 100	44 53 68 58 86 93 Result 38 <45 <45 <100	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0	50 50 50 50 50 50 10d: ME-(AL Spike 40 40	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95 108
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45	44 53 68 58 86 93 Result 38 <45 <45 <100 <110	<0.3 7.2 25 14 42 66 Meth Original 0 0	50 50 50 50 50 50 bod: ME-(AL Spike 40 40 40	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95 108 95
<mark>RH (Total Reco</mark> QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45 100	44 53 68 58 86 93 Result 38 <45 <45 <100 <110 <210	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 00d: ME-(AL Spike 40 40 40 40 -	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95 108 95
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number) in Soil	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total	mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45 100 110	44 53 68 58 86 93 Result 38 <45 <45 <100 <110	<0.3 7.2 25 14 42 66 Meth Original 0 0 0 0 0 0	50 50 50 50 50 50 50 00: ME-(AL Spike 40 40 40 -	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery ⁶ 95 108 95 - -
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands)	mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45 45 100 110 210	44 53 68 58 86 93 Result 38 <45 <45 <100 <110 <210	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 mod: ME-(AL Spike 40 40 40 - -	92 88 92 86 88 89 55 (a) J)-[ENV]AN40 Recovery 95 108 95 - - -
RH (Total Reco QC Sample	werable Hydrocarbons Sample Number		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16	mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45 100 110 210 25	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50 50 40 40 40 40 40 - - - 40	92 88 92 86 88 89 55 (a) J)-[ENV]AN40 Recovery 95 108 95 - - - - - -
<mark>RH (Total Reco</mark> QC Sample	werable Hydrocarbons Sample Number		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH >C10-C36 Total TRH >C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg	0.3 0.5 0.5 1 2 LOR 20 45 45 100 1110 210 25 25	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - - 40 -	92 88 92 86 88 89 55 (a) 10 Recovery 95 108 95 - - - - - - - - - - - - - - - - - -
RH (Total Reco QC Sample 3E216692.001	werable Hydrocarbons Sample Number		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16	mg/kg	0.3 0.5 0.5 1 2 20 45 45 100 110 210 25 25 90	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35 <90	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 met.(AL Spike 40 40 40 - - - 40 - - 40 -	92 88 92 86 88 89 55 (a) ()-[ENV]AN40 Recovery 95 108 95 - - - 98 - 108 - 108 -
RH (Total Reco QC Sample SE216692.001	werable Hydrocarbons Sample Number LB219086.004		Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH 5C10-C40 Total (F bands) TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C34 (F3) TRH >C34-C40 (F4)	mg/kg	0.3 0.5 0.5 1 2 20 45 45 100 110 210 25 25 90	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35 <90	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 met.(AL Spike 40 40 40 - - - 40 - - 40 -	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery 95 108 95 - - - - 98 - - 98 - - 108 - - - - - 98 - - - - - - - - - - - - -
RH (Total Reco QC Sample 5216692.001 5216692.001 52216692.001	werable Hydrocarbons Sample Number	TRH F Bands	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH C10-C36 Total TRH >C10-C16	mg/kg mg/kg	0.3 0.5 0.5 1 2 20 45 45 45 100 110 210 25 25 90 120	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35 <90 <120	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50 40 40 40 40 - - 40 - - 40 - - - 40 - -	92 88 92 86 88 89 55 @ J)-[ENV]AN40 Recovery 95 108 95 - - - - 98 - - 98 - - 108 - - - - - 98 - - - - - - - - - - - - -
RH (Total Reco DC Sample E216692.001 CC's in Soil DC's in Soil	verable Hydrocarbons Sample Number LB219086.004 Sample Number LB219076.004	TRH F Bands	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16	mg/kg	0.3 0.5 0.5 1 2 20 45 45 45 100 110 210 25 25 90 120 LOR 0.1	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35 <90 <120 Result 3.6	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 00: ME-(AL 40 40 - - - 40 - - 40 - 5 5	92 88 92 86 88 89 55 (a) 10 Recovery 95 108 95 108 95 - - - - 98 - - - 98 - - - 98 - - - - 98 - - - -
RH (Total Reco QC Sample 3E216692.001 CC's in Soil QC Sample	verable Hydrocarbons Sample Number LB219086.004 Sample Number LB219076.004	TRH F Bands	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C37-C40 TRH c10-C16 TRH >C10-C16 TRH >C10-C16 TRH >C10-C16 - Naphthalene (F2)	mg/kg	0.3 0.5 0.5 1 2 20 45 45 45 45 100 110 210 25 25 90 120 LOR 0.1 0.1	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35 <90 <120 Result 3.6 3.6	<0.3 7.2 25 14 42 66 Meth Original 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 00: ME-(AL Spike 40 40 40 - - - 40 - - 40 - - 5 5 5	92 88 92 86 88 89 55 (a) 1)-[ENV]AN40 Recovery 95 108 95 - - - - 98 - - 108 - - J)-[ENV]AN43 Recovery 71 71
	verable Hydrocarbons Sample Number LB219086.004 Sample Number LB219076.004	TRH F Bands	Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Parameter TRH C10-C14 TRH C15-C28 TRH C29-C36 TRH C10-C36 Total TRH >C10-C16 TRH >C10-C16	mg/kg	0.3 0.5 0.5 1 2 20 45 45 45 100 110 210 25 25 90 120 LOR 0.1	44 53 68 58 86 93 Result 38 <45 <100 <110 <210 39 35 <90 <120 Result 3.6	<0.3 7.2 25 14 42 66 Meth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 mod: ME-(AL 40 40 - - - 40 - - 40 - 5 5	92 88 92 86 88 89 55 (2) (Recovery) 95 108 95 108 95 - - - - 98 - - 108 - - 108 - - 2 8 (Recovery) 71

mg/kg

0.1

3.7

0.020678025

5

o-xylene

73

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery% SE216692.001 LB219076.004 Polycyclic Naphthalene mg/kg 0.1 <0.1 0.00963408 Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 8.1 8.495293997 10 81 d8-toluene (Surrogate) 9.3 9.072652864 10 93 mg/kg Bromofluorobenzene (Surrogate) mg/kg 6.8 6.690628137 10 68 ① Totals Total Xylenes 0.3 11 0.063698945 mg/kg --Total BTEX 0.6 22 0 mg/kg Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENVIAN433 Result Original Spike Recovery% QC Sample Sample Number LOR Units Parameter SE216692.001 LB219076.004 TRH C6-C10 25 65 0.585072857 92.5 69 mg/kg TRH C6-C9 68 20 55 0.41930588 80 mg/kg Surrogates d4-1,2-dichloroethane (Surrogate) mg/kg 8.1 8.495293997 10 81 d8-toluene (Surrogate) mg/kg 9.3 9.072652864 10 93 Bromofluorobenzene (Surrogate) 6.8 6.690628137 68 mg/kg -VPH F 3.6 0.013891959 Benzene (F0) mg/kg 0.1 Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 43 0.585072857 62.5 68

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS	
Contact	DANIEL TAYLOR	Manager	Huong Crawford	
Client	RAW EARTH ENVIRONMENTAL	Laboratory	SGS Alexandria Environmental	
Address	4/140 HASTINGS PARADE BONDI NSW 2026	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	0409 492 988	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	daniel@rawearthenvironmental.com.au	Email	au.environmental.sydney@sgs.com	
Project	DSI-BRAD	SGS Reference	SE216722 R0	
Order Number	(Not specified)	Date Received	19 Feb 2021	
Samples	5	Date Reported	26 Feb 2021	

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos analysis in soil according to SGS In-house procedures due to large volume. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environmental health and safety recommends supplying approximately 50-100g of sample in a separate container.

Sample #1: Asbestos found in approx 6x4x2mm cement sheet fragment. Sample #2: Asbestos found in approx 10x6x3mm cement sheet fragment.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Kamrul AHSAN Senior Chemist

Bennet LO Senior Organic Chemist/Metals Chemis

kintin

Ly Kim HA Organic Section Head

lin

Huong CRAWFORD Production Manager

S. Ravender.

Ravee SIVASUBRAMANIAM Hygiene Team Leader

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identificat	ion in soil				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE216722.001	S1	Soil	194g Clay,Sand,Soil, Rocks	19 Feb 2021	Chrysotile Asbestos Found at the reporting limit of 0.1g/kg Organic Fibres Detected	<0.01
SE216722.002	S2	Soil	177g Clay,Sand,Soil, Rocks	19 Feb 2021	Chrysotile Asbestos Found at the reporting limit of 0.1g/kg Organic Fibres Detected	>0.01
SE216722.003	S3	Soil	168g Clay,Soil,Rocks	19 Feb 2021	No Asbestos Found at the reporting limit of 0.1g/kg Organic Fibres Detected	<0.01
SE216722.004	S4	Soil	105g Clay,Soil,Rocks	19 Feb 2021	No Asbestos Found at the reporting limit of 0.1g/kg Organic Fibres Detected	<0.01
SE216722.005	S5	Soil	189g Clay,Sand,Soil, Rocks	19 Feb 2021	No Asbestos Found at the reporting limit of 0.1g/kg Organic Fibres Detected	<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles *** Indicates that both * and ** apply. .

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

FOOTNOTES -

SGS Environmental Services			Company Name:					nmenta							Name/No:	DSI	BRAD					
Unit 16, 33 Maddox St		Address	Address:				de, Bo	ndi NS	W						se Order No:			/	10	101		
Alexandria NSW 2015				-										Telepho	Required By:		ndard 9492988		121	121		
Telephone No: (02) 85940400 Facsimile No: (02) 85940499		Contact	Contact Name:				or							Facsimi	040	9492900						
Email: au.samplereceipt.sy			Contact Hame.											Email R	dani	daniel@rawearthenvironmental.com.au						
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	ASBESTOS	CL10	CL16	VOC8260	BTEX	8 METALS	vTPH/BTEX						and the second se	2012/2	AIL 21 1214	D
S1	19.2.21	1	1	X		1	x	1	X	1			1									
S2	19.2.21	2	-	X	1		x		x	1												
S3	19.2.21	3		X			x	1	x				1									
S4	19.2.21	4		X	1	1	x	-	x	-	+		-				-					
S5	19.2.21	5	-	X		1	x	+	x	+	+			++								
S6	19.2.21	6		X	1			X					1									
S7	19.2.21	7	1	X				X	1	1			1									
S8	19.2.21	8		X	1			X		-			1				-					
S9	19.2.21	9		X	1	1		X														
S10	19.2.21	10		X	1			X		+				++			SG	S EHS	S Svd	lney CC	C	-
S11	19.2.21	11		X		1		X	-	-	-						-			722		-
S12	19.2.21	17	1	X	1	1		X		-			-									-
S13	19.2.21	13		X	1			X		1			-									-
S14	19.2.21	14		X	1	1		X		1							-					-
S15	19.2.21	15		X	1	1		X	1	1							-					-
QS1	19.2.21	16		X	1	1				1		x	-									
Relinquished By: Date/Time:			e:	Received By:						1: 6-	eorge Zhi Dat			Date/T	ime	9/	7/21	@ 5:	40			
Relinquished By:		Da	te/Time	e:							Recei	ved B	y:	eorye	Date/T	ime	1/	6/ 6/	<u> </u>	100		

SGS				С	HA	IN C)F C	US	τοε)Y 8	AN	IAL	YSI	IS R	EQI	JES	Г					Pag	e2	_ of _2_	_
SGS Environmental Services		Company Name: Raw Earth Environmental Project Nam							e/No:	o: DSI-BRAD															
Unit 16, 33 Maddox St	reet		Address:												rder No	-									
Alexandria NSW 2015	į.			_												uired B		tand	ard	2	6/2	121			
Telephone No: (02) 85				_													tandard 26/2/21 409492988								
Facsimile No: (02) 85		1	Contact Name:			el Taylo	or							Facsi											
Email: au.samplereceipt.sy	dney@sgs.com	(Email	l Resul	ts:	d	daniel@rawearthenvironmental.com.au									
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	ASBESTOS	CL10	PCB	VOC8260	BTEX	8 METALS	vTPH/BTEX												×
Trip Blank	19.2.21	17		X									X											<u>.</u>	
Trip Spike	19.2.21	18		x									x	+											
RS1	19.2.21	19	x									x		+							<u> </u>				
		V	+											+								<u> </u>			
x			'			$\left - \right $								+											
			+'											+											
			+'																						
			+'																						
			+'									<u> </u>									ļ	ļ			
			 '																			ļ			
			'						\mid																
			<u> </u> ''''																						
-																			-						
														1											
Relinquished By:		Dat	te/Time):	Received By: G						: C	2 7/1 Date/Time					ime	97	21'	710	Cill	20			
Relinquished By:		Dat	te/Time): :						F	Receiv	ed By	:	Date/Time				ime	19/2/21@5:40pm						
Samples Intact: (Yes) No		Ter	nperat	ure: /							ler Se						Quotation No:								
			mments				<i>`</i>																		

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	AILS
Contact	DANIEL TAYLOR	Manager	Huong Crawford
Client	RAW EARTH ENVIRONMENTAL	Laboratory	SGS Alexandria Environmental
Address	4/140 HASTINGS PARADE BONDI NSW 2026	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	0409 492 988	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	daniel@rawearthenvironmental.com.au	Email	au.environmental.sydney@sgs.com
Project	DSI-BRAD	Samples Received	Fri 19/2/2021
Order Number	(Not specified)	Report Due	Fri 26/2/2021
Samples	19	SGS Reference	SE216722

- SUBMISSION DETAILS

This is to confirm that 19 samples were received on Friday 19/2/2021. Results are expected to be ready by COB Friday 26/2/2021. Please quote SGS reference SE216722 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 20/2/2021@12:40pm Yes 13°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 18 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client RAW EARTH ENVIRONMENTAL

Project DSI-BRAD

No.	Sample ID	OC Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	S1	29	26	11	7	10	11	7
002	\$2	29	26	11	7	10	11	7
003	S3	29	26	11	7	10	11	7
004	S4	29	26	11	7	10	11	7
005	S5	29	26	11	7	10	11	7
006	S6	-	26	-	7	10	11	7
007	S7	-	26	-	7	10	11	7
008	S8	-	26	-	7	10	11	7
009	S9	-	26	-	7	10	11	7
010	S10	-	26	-	7	10	11	7
011	S11	-	26	-	7	10	11	7
012	S12	-	26	-	7	10	11	7
013	S13	-	26	-	7	10	11	7
014	S14	-	26	-	7	10	11	7
015	S15	-	26	-	7	10	11	7
016	QS1	-	-	-	7	-	-	-
017	Trip Blank	-	-	-	-	-	11	7
018	Trip Spike	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

- SUMMARY OF ANALYSIS -

Client RAW EARTH ENVIRONMENTAL

Project DSI-BRAD

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	Trace Metals (Total) in Water by ICPMS
001	S1	2	1	1	_
002	S2	2	1	1	-
003	\$3	2	1	1	-
004	S4	2	1	1	-
005	S5	2	1	1	-
006	S6	-	1	1	-
007	S7	-	1	1	-
008	S8	-	1	1	-
009	S9	-	1	1	-
010	S10	-	1	1	-
011	S11	-	1	1	-
012	S12	-	1	1	-
013	S13	-	1	1	-
014	S14	-	1	1	-
015	S15	-	1	1	-
016	QS1	-	1	1	-
017	Trip Blank	-	-	1	-
019	RS1	-	-	-	7

_ CONTINUED OVERLEAF

SAMPLE RECEIPT ADVICE

CLIENT DETAILS Project DSI-BRAD SUMMARY OF ANALYSIS Image: summary of analysis Image: summary of analysis No. Sample ID Image: summary of analysis 1019 RS1 1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .